VAXELN Internals Manual

Order Number: AA-NC72A-TE

This manual describes the internal data structures and operations of the VAXELN
Kernel and its associated subsystems.

This is a preliminary version of the VAXELN Internals Manual. The complete
edition of the manual is forthcoming and can be ordered separately.

Revision/Update Information: This is a new manual.

Software Version: VAXELN, Version 4.0

digital equipment corporation
maynard, massachusetts

First Printing, July 1989

The information in this document is subject to change without notice and shouid
not be construed as a commitment by Digital Equipment Corporation.

Digital Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

The software, if any, described in this document is furnished under a license and
may be used or copied only in accordance with the terms of such license. No
responsibility is assumed for the use or reliability of software or equipment that is
not supplied by Digital Equipment Corporation or its affiliated companies.

© Digital Equipment Corporation 1989. All rights reserved.

Printed in U.S.A.

The READER'S COMMENTS form on the last page of this document requests the
user’s critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC MicroVMS ULTRIX-32m
DECmate P/OS UNIBUS
DECnet PDP VAX
DECsystem—10 PDT VAX DEC/CMS
DECSYSTEM—20 Professional VAX DEC/MMS
DECUS Q-bus VAX Rdb/ELN
DECwriter Q22-bus VAX Rdb/VMS
DEQNA Rainbow VAXBI

DEUNA RSTS VAXcluster
DIBOL RSX VAXELN
EduSystem RT VAXstation

IAS rtVAX 1000 VMS
MASSBUS ThinWire VT

MicroVAX ULTRIX Work Processor

lilglitlal

MLO-S913

This document was prepared using VAX DOCUMENT, Version 1.1.

Contents

PREFACE XXi
CHAPTER 1 OVERVIEW: THE ROLE OF THE VAXELN KERNEL 1-1
1.1 KERNEL STRUCTURE AND OPERATION 1-2
1.2 FUNCTIONS PROVIDED BY THE KERNEL 14
1.2.1 VAXELN System Image 14
1.2.2 System Initialization 1-5
1.23 Jobs and Processes 1-5

1.24 Software Interrupts, Kernel Synchronization, and Time
Services 1-6
1.25 Condition Handling 1-6
1.2.6 Error and Event Reporting 1-7
1.27 Kernel Procedure Dispatching 1-7
1.2.8 Memory Management 1-7
1.29 Object Management 1-8
1.2.10 Job and Process Scheduling 1-8
1.2.11 Job and Process Synchronization 1-10
1.2.12 Device Handling 1-10
1.2.13 Interjob Communication 1-1
1.3 NOTES ON THE KERNEL AND THE VAX HARDWARE 1-12
CHAPTER 2 THE VAXELN SYSTEM IMAGE 2-1
2.1 ROLE OF THE SYSTEM BUILDER 2-2
22 SYSTEM IMAGE HEADER 2-8

23 KERNEL IMAGE: VECTORS, DATA, PARAMETERS, AND CODE

2.3.1 Kernel Vectors
2.3.2 Kernel Data

2.33 Kernel Parameters
2.34 Kernel Code

24 PROGRAM IMAGES

24.1 Data Structures for Image Processing
2411 Program Descriptors and the Program
List - 2-16

2412 VMS Image Structures Used in Image
Processing * 2-21

2413 Kernel Section Descriptors for Program
Images « 2-25
2.4.2 Processing Program Images

2421 Processing I1SDs of Type
ISD$K_USRSTACK - 2-28

2422 Processing 1SDs of Type
ISD$K_SHRPIC » 2-28

2423 Processing I1SDs of Type
ISD$K_NORMAL - 2-29

2.42.31 ISDs with No Applicable Fiags Set —

Code Sections « 2-29

24232 ISDs with the ISD$V_DZRO Flag Set —

Demand-Zero Sections * 2-30

2.4.2.3.3 ISDs with the ISD$V_WRT and
ISD$V_CRF Flags Set — Data
Sections ¢ 2-30

24234 ISDs with the ISD$V_FIXUPVEC Flag Set

— Fixup Vector Sections « 2-30

25 DEVICE LIST

26 SHAREABLE IMAGES
2.6.1 Data Structures for Shareable Image Processing

2.6.1.1 Shareable Image Descriptors and the
Shareable Image Table + 2-36

2.6.1.2 Kernel Section Descriptors for Shareable
Images « 2-38

2.6.1.3 VMS Image Structures Used in Shareable
Image Processing « 2—41

2-9
2-10
2-12
2-12
2-13

2-14
2-15

2-27

2-31

2-33
2-35

2.6.2 Processing Shareable Images 2-42
2.6.2.1 Creating Shareable Image Descriptors and
KSDs « 244
2.6.2.1.1 No Applicable Flags Set — Shareable
Code Sections « 246
26.2.1.2 ISD$V_WRT and ISD$V_CRF Flags Set
— Data Sections « 247
2.6.2.1.3 ISD$V_WRT Flag Set and ISD$V_CRF
Clear — Shareable Data Sections 2—47
26.2.1.4 ISD$V_FIXUPVEC Flag Set — Fixup
Vector Sections » 2—48
2.6.2.1.4.1 Shareable Images Without Writeable
Sections » 2—49
2.6.2.1.4.2 Shareable Images with Writeable
Sections + 249
2.6.2.2 Address Relocation Fixup * 2-52
2.6.3 A Shareable Image Example 2-55
CHAPTER 3 SYSTEM BOOTSTRAP, KERNEL INITIALIZATION, AND
APPLICATION START-UP 3-1
3.1 PRIMARY BOOTSTRAP: VMB 3-2
3.2 SECONDARY BOOTSTRAP: INITIALIZING THE KERNEL 3-6
3.2.1 Processor-Specific Factors 3-10
3.2.2 Unmapped Initialization 3-1
3.2.2.1 Step 1 — Find the First Writeable Page and
Copy ROM Data « 3-12
3.222 Step 2 — Initialize the Console « 3-14
3223 Step 3 — Initialize the Boot-Time SCB » 3-14
3224 Step 4 — Determine the Processor
Type * 315
3225 Step 5 — Copy Parameters to the Data
Block « 3-16
3.2.2.6 Step 6 — Initialize the PFN Bitmap « 3-16
3.2.27 Step 7 — Compute the Sizes of System Data
Structures * 3-16
3228 Step 8 — Initialize the System Page Table and
Map Existing Components « 3—-19
3.23 Enabling Memory Management 3-22

3.24 Mapped Initialization
3.24.1 Step 1 — Switch Execution to the Interrupt
Stack « 3-28
3.24.2 Step 2 — Initialize the Machine-Check Data
Block « 3-28

3.24.3 Step 3 — Initialize the SCB + 3—28

3.244 Step 4 — Configure /O Address Space * 3—30

3.245 Step 5 — Initialize Processor-Specific and
Console Registers « 3-31

3.24.6 Step 6 — Create and Map Remaining System
Structures » 3-31

3.247 Step 7 — Initialize Scheduler and Job
Queues * 3-34

3.24.8 Step 8 — Create the Start-Up Job * 3-34

3249 Step 9 — Announce the System + 3-36

3.24.10 Step 10 — Start the Interval Clock « 3-36

3.24.11 Step 11 — Log the System Start-Up » 3-36

3.24.12 Step 12 — Begin Job Scheduling + 3-36

3-27

3.3 APPLICATION START-UP: THE START-UP JOB 3-37
3.3.1 Creating Jobs Sequentially 3-37

3.32 Job Initialization and KER$INITIALIZATION_DONE 3-40
CHAPTER 4 JOB AND PROCESS CREATION AND DELETION 4-1
4.1 PROCESS EXECUTION ENVIRONMENT 4-3
4.2 JOB AND PROCESS DATA STRUCTURES 4-3
4.2.1 Job Control Block 46

4.2.2 Process Control Block 4-11

4.2.3 Process Hardware Context Block 4-16

43 JOB AND PROCESS VIRTUAL MEMORY 4-20
4.3.1 Job Virtual Address Space 4-20

4.3.2 Process Virtual Address Space 4-23

44 JOB CREATION 4-26

vi

4.5

4.6

4.4.1

4.4.2

4.4.3

Phase 1: Creating Minimal Job and Master Process
Context
4411 Step 1 — Verify Call Arguments + 4-28
4412 Step 2 — Create the Job Control Block « 4-29
4413 Step 3 — Create Object Management
Structures « 4-32
4414 Step 4 — Initialize JCB Fields for PO Memory
Management « 4-33
4415 Step 5 — Create the Master Process * 4-33
4416 Step 6 — Create the Job’s Job Port « 4-35
4417 Step 7 — Allocate the PO Page Table for
KAB20-Based Systems « 4-36
4418 Step 8 — Initiate a Scheduling Pass « 4-36
Phase 2: Finishing Creation of the Job Environment
4.4.2.1 Step 1 — Allocate the Process Stacks « 4-37
4422 Step 2 — Map the Job’s Image
Sections « 4-37
4423 Step 3 — Store the Job’s Program Arguments
for Jobwide Access * 440
4424 Step 4 — Begin Program Execution + 440
Phase 3: Entering the Program Code

PROCESS CREATION

4.5.1

4.5.2

453

Phase 1: Creating Minimal Process Context
4511 Step 1 — Verify Call Arguments « 444
4512 Step 2 — Create the Process Control
Block « 445
4.51.3 Step 3 — Create the Process Hardware
Context Block * 446
4514 Step 4 — Allocate a P1 Page Table » 448
4515 Step 5 — Allocate the First Page of Kernel
Stack « 449
45.1.6 Step 6 — Enter the PCB into the Job’s Object
Table » 449
4517 Step 7 — Initiate a Scheduling Pass * 449
Phase 2: Finishing Creation of the Process
Environment
4521 Step 1 — Allocate the Process Stacks « 4-50
4522 Step 2 — Begin Program Execution « 4-51
Phase 3: Entering the Process Code

JOB AND PROCESS EXIT AND DELETION

4.6.1

Process Deletion

4-27

4-36

4-52

4-53
4-55

vil

4.6.2

Master Process Deletion

4-56

CHAPTER 5 SOFTWARE INTERRUPTS, KERNEL SYNCHRONIZATION, AND

TIME SUPPORT 51
5.1 SOFTWARE INTERRUPTS 5-2
5.1.1 Software Interrupt Mechanism 5-3
5.1.2 VAXELN Software Interrupt Service Routines 5-3
5.2 KERNEL SYNCHRONIZATION 5-5
5.2.1 Interlocked Instructions 5-6
5.2.2 Elevated IPL 5-6
5.23 Spinlocks 5-8
5.24 Interprocessor Interrupts 5-10
53 TIME SUPPORT 5-11
5.3.1 Interval Clock 5-12
5.3.2 Timekeeping Under VAXELN 5-14
5.3.3 Timer Queue and Timer Wait Control Blocks 5-15
5.3.4 Interval Clock Interrupt Service Routine 5-16
5.3.5 Software Timer Interrupt Service Routine 5-18
5.3.6 Time-Related Kernel Procedures 5-19

5.3.6.1 KER$SET_TIME « 5-20

5.3.6.2 KER$GET_TIME « 5-22

5.3.6.3 KER$GET_UPTIME - 5-22

CHAPTER 6 CONDITION HANDLING 6-1
6.1 CONDITIONS DETECTED BY HARDWARE AND SOFTWARE 6-2
6.2 DATA STRUCTURES FOR CONDITION HANDLING 6-3
6.2.1 Call Frames 64
6.2.2 Condition-Handler Argument List 6-7
6.2.3 Signal Arrays 6-8
6.2.4 Mechanism Arrays 6-10

vill

6.3

6.4

6.5

6.6

6.7

EXCEPTION CONDITIONS

6.3.1
6.3.2

Initial Processor Actions

Initial Kernel Actions

6.3.2.1 Access Control Violation Exceptions « 6-16
6.3.2.2 Arithmetic Exceptions * 6—17

6.3.2.3 Kernel-Stack-Not-Valid Exceptions « 6-18
6.3.24 Reserved Instruction Exceptions « 6-19

SOFTWARE CONDITIONS

ASYNCHRONOUS EXCEPTION CONDITIONS

6.5.1

6.5.2

6.5.3
6.5.4

6.5.5

Data Structures and Hardware Features for
Asynchronous Exceptions

6.5.1.1 REI Instruction « 6-22

6.5.1.2 ASTLVL Register » 6-22

6.5.1.3 Hardware Context Block « 6-23

6.5.1.4 Process Control Block » 6-24

Uses of Asynchronous Exception Conditions
6.5.2.1 Process Signal Exception « 6-25

6.5.2.2 Process Attention Signal Exception « 6-26
6.5.2.3 Power-Failure Exception « 6-26

6.56.2.4 Debugger HALT Command * 6-26
Requesting an Asynchronous Exception
Delivering an Asynchronous Exception: The IPL 2
Interrupt

Disabling and Enabling Asynchronous Exceptions

UNIFORM CONDITION DISPATCHING

6.6.1
6.6.2
6.6.3

6.6.4

Building the Mechanism Array and Argument List
Reflecting the Condition Back to the Originator’s Mode
Dispatching the Condition

6.6.3.1 Establishing a Condition Handler » 6-39
6.6.3.2 Searching the Call Stack « 640

6.6.3.3 Dealing with Multiple Active Signals « 6—41
Dealing with Unhandled Conditions

6.6.4.1 Calling the Last-Chance Handler » 646
6.6.4.2 Forcing Process Exit « 646

CONDITION HANDLER ACTIONS

6.7.1

Continuing or Resignaling

6-12
6-12
6-15

6-19

6-20

6-21

6-25

6-27

6-28

6.7.2

Unwinding the Call Stack: KER$UNWIND

6.7.2.1 Interface to KERSUNWIND - 6-48
6.7.2.2 A Sample Unwind + 6-50

6.7.2.3 Unwinding Multiple Active Signals » 6-54

CHAPTER 7 ERROR AND EVENT REPORTING

71

7.2

7.3

ERROR LOGGING SUBSYSTEM

7.1.1

7.1.2

7.1.3

Errors and Events Reported by the Error-Logging

Subsystem

Components of the Error-Logging Subsystem

7.1.2.1 Error-Logging Data Structures « 74

71.21.1 Error Message Buffers « 7-5

71212 System Data ltems « 7-7

7122 Kernel Error-Logging Components « 7-8

7.1.2.3 ERRFORMAT Job - 7-9

71.2.4 System Dump Facility » 7-9

71.25 Error-Logging Server « 7-10

Error-Logging Operation

7.1.3.1 Posting an Error or Event « 7-10

7.1.3.1.1 Posting Error-Log Entries from
Kernel Level: KER$ALLOCEMB and
KER$RELEASEMB - 7-11

7.1.3.1.2 Posting Errors and Events from Job Level:

KER$POST_ERRORLOG -« 7-12
7.1.3.2 Awakening the ERRFORMAT Job with
KER$WAKEUP « 7-13
7.1.33 Operation of the ERRFORMAT Job « 7-14

BUGCHECK HANDLING

MACHINE-CHECK HANDLING

7.3.1

7.3.2

Machine-Check Handlers

Machine-Check Recovery:
KER$MACHINECHK_PROTECT

7-1

7-1

7-2
7-4

7-10

7-16

7-18
7-19

7-20

CHAPTER 8 KERNEL PROCEDURES AND PROCEDURE DISPATCHING 8-1
8.1 KERNEL VECTORS AND PROCEDURE ENTRY POINTS 8-2
8.2 DISPATCH TO PROCEDURES THAT EXECUTE IN KERNEL MODE 8-5
8.3 DISPATCH TO PROCEDURES THAT EXECUTE IN THE CALLER’S

MODE 8-9
8.3.1 Routines Invoked with a CALL Instruction 8-10
8.3.2 Routines Invoked with a Subroutine Instruction 8-11
8.4 RETURN OF KERNEL PROCEDURE VALUES AND STATUS 8-13
8.4.1 Return of Procedure Values 8-14
8.4.2 Return of Status Values 8-15
8.5 CHANGE-MODE SERVICE FOR USER-MODE JOBS —
KER$ENTER_KERNEL_CONTEXT 8-17
CHAPTER 9 MEMORY MANAGEMENT AND DYNAMIC ALLOCATION 9-1
9.1 MEMORY MANAGEMENT DATA STRUCTURES 9-2
9.1.1 Allocation Bitmaps and Bitmap Descriptors 9-3
9.1.2 Page Tables and Page Table Entries 9-7
9.1.21 VAXELN Page Tables * 9-7
9.1.2.1.1 SO Page Table » 9-7
9.1.2.1.2 PO Page Tables *+ 9-8
9.1.2.1.3 P1 Page Tables » 9-12
9.1.2.2 VAXELN Page Table Entries « 9-15
9.1.3 System, Job, and Process Structures 9-18
9.1.3.1 System Memory Management
Structures « 9-18
9.1.3.2 Job Memory Management Structures « 9-20
9.1.3.3 Process Memory Management
Structures « 921
9.2 ALLOCATING PHYSICAL MEMORY 9-23

xi

9.3 ALLOCATING VIRTUAL MEMORY 9-24
9.3.1 Allocating System Virtual Memory 9-25
9.3.1.1 KER$ALLOCATE_REGION and
KER$FREE_REGION Subroutines « 9-26
9.3.1.2 KER$ALLOCATE_SYSTEM_REGION and
KER$FREE_SYSTEM_REGION Kernel
Procedures « 9-29
9.3.2 Allocating User Virtual Memory 9-31
9.3.2.1 Allocating and Deallocating User Page Table
Entries » 9-32
9.3.2.2 Aliocating User Memory Under Program
Control: KER$ALLOCATE_MEMORY -« 9-37
94 ALLOCATING SYSTEM POOL 942
9.4.1 Initializing System Pool 9-43
9.4.2 Allocating and Deallocating Pool Blocks 9-43
CHAPTER 10 KERNEL OBJECTS AND THEIR MANAGEMENT 10-1
10.1 CREATING, MANAGING, AND DELETING KERNEL OBJECTS 10-2
10.1.1 Structures and Data for Managing Kernel Objects 10-3
10.1.1.1 Jobwide Data Items » 104
10.1.1.2 Base Table » 104
10.1.1.3 Object Pointer Tables * 10—6
10.1.1.4 Object Identifiers » 10-8
10.1.1.5 Kernel Object Structures « 10-12
10.1.2 Creating Kernel Objects 10-14
10.1.3 Translating Object Identifiers 10-18
10.1.4 Deleting Objects 10-21
10.1.4.1 Deleting an Individual Kernel Object * 10-22
10.1.42 Deleting Object Structures at Job Exit « 10-25
10.2 CREATING, MANAGING, AND DELETING PORT OBJECTS 10-26
10.2.1 Structures for Managing Port Objects 10-27

xii

10.2.1.1 Systemwide Data ltems « 10-28
10.2.1.2 Port Address Table « 10-28
10.2.1.3 Port Object Identifiers « 10-30
10.2.1.4 Port Object Structure « 10-33
10.2.1.5 Job Port Queue « 10-34

10.2.2 Creating Port Objects

10-34

10.2.3 Translating Port Object Identifiers 10-39
10.2.4 Deleting Port Objects 1042
10.2.4.1 Deleting an Individual Port Object « 1042
10.24.2 Deleting Port Objects at Job Exit « 1043
CHAPTER 11 JOB AND PROCESS SYNCHRONIZATION 11-1
11.1 DATA STRUCTURES FOR JOB AND PROCESS SYNCHRONIZATION 11-3
11.1.1 Wait Control Block 114
11.1.2 Process Control Block 11-9
11.1.3 Kernel Objects 11-10
11.1.3.1 Event Object * 11-10
11.1.3.2 Semaphore Object » 11-13
11.1.3.3 Process Object « 11-17
11.1.3.4 Area Object * 1117
11.1.3.5 Port Object « 11-18
11.1.3.6 Device Object « 11-19
11.1.4 KER$WAIT Kernel Vectors 11-20
11.1.5 Timer Queue 11-21
11.2 KER$WAIT PROCEDURES 11-22
11.2.1 Step 1 — Enter the Procedure 11-23
11.2.2 Step 2 — Establish WCBs for the Wait 11-23
11.23 Step 3 — Establish the Timer WCB 11-25
11.24 Step 4 — Save the Address of the First WCB 11-26
11.2.5 Step 5 — Test the Wait Conditions 11-26
11.2.6 Step 6 — Test for a Pending Asynchronous Exception 11-27
11.2.7 Step 7 — Insert the WCBs into Walt Queues 11-28
11.2.8 Step 8 — Remove the Process from Execution 11-30
11.3 SATISFYING A PROCESS WAIT 11-31
11.3.1 KER$SIGNAL Procedure 11-32
11.3.1.1 Signaling an Area Object + 11-33
11.3.1.2 Signaling an Event Object * 11-34
11.3.1.3 Signaling a Process Object ¢ 11-35
11.3.1.4 Signaling a Semaphore Object * 11-36
11.3.2 KER$SIGNAL_DEVICE 11-36

xiii

11.3.3 Kernel Subroutines to Support Object Signaling 11-39
11.3.3.1 KERS$STEST_WAIT « 11-39
11.3.3.2 KER$SATISFY_WAIT - 1141
11.3.3.3 KERSUNWAIT - 1142
APPENDIX A KERNEL PARAMETERS AND DATA A-1
AAd KERNEL PARAMETERS A-1
A2 KERNEL DATA A-3
APPENDIX B KERNEL DATA STRUCTURES B-1
B.1 ACB — AREA CONTROL BLOCK B-1
B.2 ADP — ADAPTER CONTROL BLOCK B-5
B.3 ARA — AREA OBJECT B-7
B.4 BMP — ALLOCATION BITMAP DESCRIPTOR B-9
B.5 DEV — DEVICE OBJECT B-9
B.6 EMB — ERROR-LOGGING MESSAGE BUFFER HEADER B-14
B.7 ERL — EMB RECORD HEADER B-15
B.8 EVT — EVENT OBJECT B-16
B9 IDB — INTERRUPT DISPATCH BLOCK B-16
B.10 KSD — KERNEL SECTION DESCRIPTOR B-20

xiv

B.11

B.12

B.13

B.14

B.15

B.16

B.17

B.18

B.19

B.20

B.21

B.22

B.23

B.24

MSG — MESSAGE OBJECT

NAM — NAME OBJECT

NETCON — NETWORK CONNECTION MESSAGE

NS — NAME SERVICE REQUEST MESSAGE

JCB — JOB CONTROL BLOCK

JPB — JOB PARAMETER BLOCK

PCB — PROCESS CONTROL BLOCK

PRT — PORT OBJECT

PRG — PROGRAM DESCRIPTOR

PTX — PROCESS HARDWARE CONTEXT BLOCK

SCR — SYSTEM CONFIGURATION RECORD

SEM — SEMAPHORE OBJECT

SHT — SHAREABLE IMAGE DESCRIPTOR

WCB — WAIT CONTROL BLOCK

B-21

B-24

B-26

B-28

B-30

B-30

B-31

B-31

B-36

B-37

B-37

B-38

B-39

B—40

INDEX Index~1

FIGURES

2-1 VAXELN System Image 2-5
2-2 Program List and Program Descriptors 2-19
2-3 Structure of a VMS Image 2-22
24 General Structure of a VMS ISD 2-23
2-5 Structure of a Private KSD 2-25
2-6 Structure of a Shareable KSD 2-38
2-7 Structure of a Global KSD 2-40
2-8 A Global KSD Refers to Shareable KSDs 2-40
2-9 Structure of an Image Fixup Vector 2-43
2-10 Multiple Fixup Vectors in Writeable Shareable Images _____ 2-50
2-11 Multiple .ADDRESS Sections in Writeable Shareable Images 2-52
3-1 State of Physical Memory After VMB Executes 33
3-2 Mapping of the SO Region by the Kernel 3-7
3-3 Kernel Code That Enables Memory Management 3-23
34 Enabling Memory Management Through the Temporary PO Page

Table, Part 1 3-24
3-5 Enabling Memory Management Through the Temporary PO Page

Table, Part 2 3-25
3-6 Relationship Between the SCB and the Unexpected-Event Dispatch

Block 3-30
4-1 Execution Context of a Process 44
4-2 Structure of a Job Control Block 4-7
4-3 Structure of a Process Control Block 4-13
44 Structure of a Process Hardware Context Block 4-18
4-5 Structure of PO Virtual Memory 4-21
4-6 Structure of P1 Virtual Memory 4-24
5-1 General Layout of a VAX SCB 5-2
5-2 Timer Queue 5-17
6-1 VAX Call Frame for CALLG and CALLS 6-5
6-2 Condition-Handler Argument List 6-7
6-3 Signal Array 6-9
64 Mechanism Array 6—11

xvi

6-5
6-6
6-7
6-8
6-9
6-10
6-11
7-1
8-1
8-2

8-3

8-5

Condition Stack

Locating and Calling a Condition Handler

Common Call Site for Condition Handiers

Modified Search with Multiple Active Signals, Part 1
Modified Search with Multiple Active Signals, Part 2
Call Frame Modification by KER$UNWIND

Modified Unwind with Multiple Active Signals
The Use of KERSMACHINECHK_PROTECT

Structure of a Kernel Vector

Control Flow in Dispatching Kernel Procedures That Use Kernel
Mode

CHMK Dispatch — KER$KERNEL_SERVICES

Structure of a Kernel Vector for Caller-Mode Procedures Invoked
with a CALL Instruction

Control Flow in Dispatching Kernel Procedures That Use the
Caller’s Mode: CALL Invocation

Structure of a Kernel Vector for Caller-Mode Procedures Invoked
with a Subroutine Instruction

Control Flow in Dispatching Kernel Routines That Use the Caller’s
Mode: Subroutine Invocation

Common Procedure Exit Code: KER$RETURN_STATUS

KER$ENTER_KERNEL_CONTEXT Procedure
An Allocation Bitmap for 128 Pages of Memory

Structure of a Bitmap Descriptor

Layout of PO Page Table Slots
Structure of a VAXELN Page Table Entry

Base Table

First Object Pointer Table, after Initialization
First Object Pointer Table after the Creation of Five Objects
Structure of an Object Identifier

Formation of an Object Identifier
Structure of an Event Object

Creation of an Event Object

Kernel Object Management Structures after the Creation of 34
Objects

Kernel Object Translation with KER$TRANSLATE_OBJECT

8-10

8-12

8-13

8-14
8-16
8-18

£&L

9-15
10-5

10-8
10-9
10-12
10-13
10-15

10-19
10-21

xvil

10-10 Use of KER$TRANSLATE_OBJECT by KER$CLEAR_EVENT ____ 10-21

10-11 Deleting an Object with KER$DELETE 10-24
10-12 Port Address Table 10-30
10-13 Structure of a Port Object Identifier 10-31
10-14 Creation of a Port Object 10-36
10-15 Port Address Table after the Creation of 3 Ports 10-38
10-16 Port Object Translation with KER$TRANSLATE_PORT 1040
10-17 Use of KER$TRANSLATE_PORT by KER$RECEIVE = 1041
11-1 Structure of a Wait Control Block 11-5
11-2 Relationship of WCBs to the PCB 11-8
11-3 Structure of an Event Object 11-11
114 Structure of a Semaphore Object 11-14
11-5 Kernel Vector for KER$WAIT_ANY 11-20
116 Two Processes in the Waiting State 11-29
B-1 Structure of an Area Control Block B-2
B-2 Structure of an Adapter Control Block B-5
B-3 Structure of an Area Object B-8
B4 Structure of a Device Object B-10
B-5 Structure of an Error-Logging Message Buffer Header = B-14
B-6 Structure of an EMB Record Header B-15
B-7 Structure of an Interrupt Dispatch Block B-17
B-8 Structure of a Message Object B-22
B-9 Structure of a Name Object B-24
B-10 Structure of a Network Connection Messsage B-26
B-11 Structure of Name Service Request Messsage B-28
B-12 Structure of a Job Parameter Block B-31
B-13 Structure of a Port Object B-33
B-14 Structure of a Program Descriptor B-36
B-15 Structure of a System Configuration Record B-38
B-16 Structure of a Shareable Image Table Entry B-39

xvill

TABLES
2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
3-1
3-2
4-1

4-2
4-3
44
4-5

5-1
5-2
5-3
54
55
6-1

6-2
6-3
64
6-5

6-6
6-7
6-8
7-1
7-2

Elements of a System Image
VAXELN Kernel Images

Program Descriptor Fields

Job Parameter Block Fields

Private KSD Fields

System Configuration Record Fields

Shareable Image Descriptor Fields

Shareable and Global KSD Fields

Characteristics of Shareable KSDs

KSDs and Image Sections for TEST.EXE

Bootstrap Elements in Memory After VMB Executes
System Components Mapped into SO Address Space
Job Control Block Fields

Process Control Block Fields

Process Hardware Context Block Fields
Job Components Mapped into PO Address Space

Process Components Mapped into P1 Address Space
VAXELN Software Interrupts and Service Routines

Common IPL Values Used by the Kernel for Synchronization
Kernel Spiniocks

Interprocessor Interrupts
Time-Related Kernel Values

Structure of a VAX Call Frame

Structure of the Condition-Handler Argument List
Structure of the Signal Array

Structure of the Mechanism Array

Selection of Exception Stack
VAX Exception Vectors Under VAXELN

Exceptions Serviced by Module EXCEPTION

Signal Names for Arithmetic Exceptions
EMB Header Fields

EMB Record Header Fields

2-6

2-9
2-16
2-18
2-26
2-31
2-36
2-39
2-46
2-57

Let

4-14
4-19
4-22
4-25

57

5-11
5-14

6-10
6-11
6-13
6-13
6-16
6-18

7-5

7-5

xix

7-3 Error-Log Entry Types and Their Values 7-6

7-4 System Data ltems That Support Error Logging 7-7
7-5 Machine-Check Recovery Function Masks 7-21
9-1 Bitmap Descriptor Fields 9-5
9-2 Bitmap Allocation Subroutines 9-6
9-3 VAXELN PTE Fields 9-15
94 PTE Memory-Access Protection Codes 9-16
9-5 PTE Type Codes 9-17
9-6 Memory Management Data Stored in the Kernel Data Block 9-18
9-7 Job Memory Management Data StoredintheJCB = 9-20
9-8 Process Memory Management Data Stored inthe PCB = 9-22
9-9 Process Memory Management Data Stored inthe PTX = 9-22
10-1 Bit Fields Within the Object Identifier 10-9
10-2 Assembly-Time Symbols Representing Object Identifier Bit Fields _ 10-10
10-3 Kernel Constants That ldentify Object Types 10-13
104 Bit Fields Within the Port Object Identifier 10-32
10-5 Assembly-Time Symbols Representing Port Identifier Bit Fields __ 10-33
11-1 WCB Fields 11-6
11-2 PCB Fields to Support Process Waiting 11-9
11-3 Event Fields 11-12
114 Semaphore Fields 11-15
11-5 Walit Tests Performed by KER$TEST_WAIT 1140
116 Changes to Objects Performed by KER$SATISFY_WAIT ____ = 1142
A-1 Kernel Parameters A-1
A-2 Kernel Data A-3
B-1 Area Control Block Fields B-3
B-2 Adapter Control Block Fields B-6
B-3 Area Fields B-8
B4 Device Object Fields B-11
B-5 Interrupt Dispatch Block Fields B-18
B-6 Message Fields B-23
B-7 Name Fields B-25
B-8 Network Connection Message Fields B-27
B-9 Name Service Request Message Fields B-28

B-10 Port Fields B-34

Preface

Manual Objectives

The VAXELN Internals Manual describes the data structures, algo-
rithms, and internal components of Version 4.0 of the VAXELN Kernel
and a number of its associated subsystems. The detailed information
presented in this manual should help VAXELN system designers and
programmers understand how a VAXELN system functions and how
best to take advantage of certain features of the VAXELN software.

There is no guarantee that any data structure or subroutine described
in this manual will remain the same in subsequent releases of the
VAXELN software. Therefore, the ultimate authority on how the kernel
or any other component of the system works is the source code for that
component.

Intended Audience

This manual is for VAXELN system architects and programmers who
understand VAXELN programming and the VAX architecture and

assembly language in depth and who need to understand the internal
implementation of the VAXELN Kernel and its associated subsystems.

xxi

Structure of This Document

xXil

The VAXELN Internals Manual contains the following chapters and
appendixes:

¢ Chapter 1, Overview: The Role of the VAXELN Kernel, introduces
the internals of the VAXELN Kernel.

* Chapter 2, The VAXELN System Image, describes the structure
and function of a VAXELN system image.

¢ Chapter 3, System Bootstrap, Kernel Initialization, and Application
Start-Up, describes the kernel’s initialization and the start-up of
applications jobs.

* Chapter 4, Job and Process Creation and Deletion, describes
the data structures and operations that support job and process
creation and termination.

* Chapter 5, Software Interrupts, Kernel Synchronization, and Time
Support, describes the data structures and operations that support
the software interrupts, kernel synchronization, and time services.

¢ Chapter 6, Condition Handling, describes the data structures and
operations that enable the kernel to detect, deliver, and handle
exceptions, asynchronous exceptions, and software conditions.

¢ Chapter 7, Error and Event Reporting, describes the data structure
and operations that support error logging, machine-check handling,
and bugchecks.

¢ Chapter 8, Kernel Procedures and Procedure Dispatching, describes
how the kernel dispatches calls to its procedure code.

¢ Chapter 9, Memory Management and Dynamic Allocation, describes
the data structures and operations that support virtual address
translation and the allocation of physical and virtual memory.

* Chapter 10, Kernel Objects and Their Management, describes the
data structure and operations that support the creation, use, and
deletion of kernel objects.

¢ Chapter 11, Job and Process Synchronization, describes the data
structures and operations that enable processes to synchronize
their execution by waiting for kernel objects.

* Appendix A, Kernel Parameters and Data, describes the System
Builder parameters and dynamic data used by the kernel.

Appendix B, Kernel Data Structures, summarizes the data struc-
tures manipulated by the kernel.

Associated Documents

In addition to the VAXELN Internals Manual, the VAXELN documen-
tation set contains the following guides and reference manuals:

VAXELN Release Notes. These notes describe enhancements made
to the last version of VAXELN, current restrictions, and additions
to documentation.

VAXELN Installation Guide. This manual describes the VAXELN
installation procedure.

Introduction to VAXELN. This manual surveys the features of the
VAXELN Toolkit, introduces VAXELN programming concepts and

practices, and illustrates the design, coding, building, and running
of a sample VAXELN application.

VAXELN Development Utilities Guide. This manual explains how
to use the VAXELN Host System Software and other utilities to
develop and run VAXELN applications.

VAXELN Run-Time Facilities Guide. This manual is a guide to
using the VAXELN Run-Time Software.

VAXELN Application Design Guide. This manual contains sample
VAXELN applications for use and reference in designing VAXELN
applications.

VAXELN Pascal Language Reference Manual. This manual de-
scribes the components of the VAXELN Pascal language and the
Pascal program-development process.

VAXELN Pascal Run-Time Library Reference Manual. This man-
ual describes the VAXELN Pascal interface to kernel and utility
procedures.

VAXELN C Run-Time Library Reference Manual. This manual is
a guide to C programming under VAXELN and describes the C
interface to kernel and utility procedures.

VAXELN FORTRAN Run-Time Library Reference Manual. This
manual is a guide to FORTRAN programming under VAXELN and
describes the FORTRAN interface to kernel and utility procedures.

VAXELN Guide to DECwindows. This manual describes how
to program and build dedicated, real-time applications that use
VAXELN and DECwindows software in concert.

xxiii

xxiv

* VAXELN Messages Manual. This manual describes the messages
issued by the VAXELN Toolkit. Each message description in-
cludes an explanation and, where applicable, a suggested recovery
procedure.

e VAXELN Master Index and Glossary. This index and glossary
include index entries and glossary terms for the manuals in the
VAXELN documentation.

The following documents are relevant to a discussion of VAXELN
internals and will enhance your understanding of the information
presented in this manual:

* VAX Procedure Calling and Condition Handling Standard. This
document, part of the VMS documentation, defines the standards
for all external interfaces that can be called from Digital’s sup-
ported, standard system software and all external procedure calls
generated by standard Digital language processors.

* VMS Linker Reference Manual. This manual describes how the
VMS Linker works and how to use it.

® VAX Architecture Handbook. This handbook provides a detailed
technical description of the VAX architecture, including virtual
addresses, data representations, instruction formats, addressing
modes, interrupt schemes, and memory management.

* VAX Hardware Handbook. This handbook provides general tech-
nical information for the VAX hardware product line. It includes
descriptions and specifications for the VAX processors, data storage
systems and devices, VAXcluster configurations, and communication
products.

e VAX/VMS Internals and Data Structures. This book describes in

detail the operation of the VMS operating system executive and its
associated subsystems.

Conventions

The following conventions are used throughout this manual:

Convention

Meaning

kernel

module

data structures

<15:5>

The term kernel refers to the VAXELN Kernel, the real-
time executive software that enables VAXELN systems
to execute. In some usages, the term refers to the
kernel’s image file, such as QBUSKER.EXE. In others,
it refers to the characteristics or actions of a procedure,
subroutine, or service routine that resides within the
kernel image portion of a VAXELN system image and is
mapped into system virtual address space at run time.

The term module refers to a VAXELN system source
file. A module name that appears without a facility
name prefix ([facility]) is assumed to be a part of the
[KERNEL] facility. Modules that are not part of the
kernel are further identified by their facility names;
for example, module [DEBUGJLOCALNUC refers to a
module that is part of the VAXELN debugger.

Unless otherwise noted, illustrations of data struc-
tures and memory are aligned on longword boundaries.
Furthermore, the lowest addresses appear at the top
right portion of the diagram and increase toward the left
and bottom.

Bit fields are shown between angle brackets. The upper
and lower bounds of the field are shown from left to
right, separated by a colon. For example, the notation
<15:5> represents a bit field that contains bits 5 through
15 in a word.

xXXVi

Convention

Meaning

Lists

decimal notation

UPPERCASE

characters

The following conventions apply to lists:

e In lists that convey information with no order or
hierarchy, list elements are indicated by bullets (e).
Sublists without hierarchy are indicated by dashes
(—).

e In lists that convey ordered operations, list ele-
ments are numbered. Sublists that indicate ordered
operations are lettered.

e In numbered lists that relate to numbered items in
a figure, element numbers are enclosed in circles,

for example, @.

Numeric values are represented in decimal notation
unless otherwise noted.

Vertical ellipsis points in a figure or example indicate
that unnecessary or repetitive information has been
omitted.

VAXELN and language-specific reserved words and iden-
tifiers are printed in uppercase characters, except for

reserved words in C, which is a case-sensitive language.
These terms are presented in bold lowercase characters.

Chapter 1

Overview: The Role ofthe VAXELN
Kernel

The VAXELN Internals Manual describes the essential data structures
and operations of the VAXELN real-time executive software, called
the VAXELN Kernel. Viewed by the VAXELN programmer, the kernel
presents an interface composed of a set of objects, representing such
real-time entities as devices and synchronization points, and a set of
procedures for creating and manipulating those objects.

The VAXELN programmer requires no special knowledge of these ob-
jects and procedures beyond their functional characteristics and calling
sequences, as described in the user documentation, to create sophis-
ticated real-time applications entirely in high-level languages. One

of the major advantages of the VAXELN Toolkit is just this packag-
ing of complex operations in a simple programming and development
interface.

This manual presents information beyond that strictly required by
VAXELN programmers in the belief that detailed technical knowledge
of the kernel allows users to perform the following kinds of tasks more
effectively:

* Design and code real-time and dedicated applications for maximum
performance

* Tune System Builder parameters for optimized use of system re-
sources

¢ Understand run-time behavior and troubleshoot problems

® Match processor and peripheral capacities to application require-
ments

Overview: The Role of the VAXELN Kernel 1-1

¢ Understand overall system operation and interpret source code
listings
* Modify and customize system components

To this end, the VAXELN Internals Manual focuses almost exclusively
on the data structures and operations of the kernel, to the exclusion
of other system components, such as common device drivers, run-time
libraries, and file service. The System Builder and debugger utilities
are discussed inasmuch as they significantly support or interact with
the kernel. This focus on the VAXELN Kernel emphasizes its central
role in the VAXELN programming environment.

This first chapter begins the close examination of the kernel by provid-
ing an overview of its role in supporting the execution of a VAXELN
application. The following sections survey the structure and opera-
tion of the kernel (Section 1.1), the functions provided by the kernel
(Section 1.2), and the kernel’s relationship to the VAX architecture
and hardware (Section 1.3). This overview material, however, can in
no way substitute for a thorough knowledge of VAXELN derived from
the user documentation and actual VAXELN programming experience.
The VAXELN Run-Time Facilities Guide provides a starting point for
preparation for the profitable use of this manual.

The remaining chapters of the manual fall roughly into three parts.
Chapters 2 through 4 describe the foundation on which VAXELN ap-
plications execute: the structure and function of the system image,
system initialization, and the creation of jobs and processes. Chapters
5 through 10 describe the kernel’s control mechanisms: internal syn-
chronization and timing, condition-handling logic, error and event
reporting, kernel procedure dispatching, memory management, and
kernel object management. A chapter on scheduling will join this part
in a later edition. Chapter 11 returns attention to the job and process
level by describing synchronization mechanisms. Chapters on device
handling and communication will round out this part in a later edition.

1.1 Kernel Structure and Operation

The VAXELN Kernel was designed to provide a core of real-time func-
tionality, such as multitasking and synchronization, that takes full
advantage of the VAX architecture with a minimum of system over-
head. The kernel image and a program provided by the user can
potentially constitute the entire application system. More elaborate
services, such as a file system or a terminal driver, can be added as
they are needed. This leaves the programmer free to decide when the

1-2 Overview: The Role of the VAXELN Kernel

cost of adding a service is too high. The core of functionality remains
and can be used to build additional features the programmer requires.

The general philosophy behind the structure and operation of the
kernel can be summarized as follows:

* Provide a small, efficient core of real-time functions. This allows
applications to run on small memory targets and eliminates much
of the overhead associated with conventional operating systems.

* Provide a simplified approach to real-time programming through
the use of kernel objects and procedures to represent real-time
entities and operations. This approach gives programmers full
access to the VAX hardware from high-level languages, a distinct
advantage in productivity and maintainability, especially for device-
handling applications.

* Exploit fully the VAX hardware to provide assistance in accomplish-
ing system tasks. For example, the kernel employs the VAX mem-
ory management hardware to perform virtual address translation
and memory protection.

* Keep system and user components memory-resident at all times.
Eliminating memory paging simplifies memory management and
scheduling, makes address-translation times fast and predictable,
and allows VAXELN systems to run in a diskless environment.

The kernel further increases its efficiency by not competing with user
processes for system resources and processor cycles. The kernel itself
creates no processes for its own use; that is, it does not function as
an independently executing monitor program. Rather, it is a highly
structured collection of data, procedures, and interrupt and exception
service routines that execute when they are called from user code or
activated in response to process or system events. The kernel runs
exclusively at boot time to initialize the system and activate the user’s
application. Thereafter, the kernel is strictly driven by events. Its code
is executed when kernel procedures are called, when hardware devices
generate interrupts, or when processor or device controller microcode
detects an error or anomaly.

Overview: The Role of the VAXELN Kernel 1-3

1.2 Functions Provided by the Kernel

This section summarizes the major functions provided by the VAXELN
Kernel. These kernel functions fall roughly into three classes:

* Initialization mechanisms: the system image (Section 1.2.1); sys-
tem initialization (Section 1.2.2); and job and process creation
(Section 1.2.3)

¢ Control mechanisms: software interrupts, kernel synchronization,
and time services (Section 1.2.4); condition handling (Section 1.2.5);
error and event reporting (Section 1.2.6); kernel procedure dis-
patching (Section 1.2.7); memory management (Section 1.2.8);
object management (Section 1.2.9); and job and process scheduling
(Section 1.2.10)

¢ Job-level support: job and process synchronization (Section 1.2.11);
device handling (Section 1.2.12); and interjob communication
(Section 1.2.13)

As the following sections indicate, these functions are also the subjects
of the remaining chapters of this manual.

1.2.1 VAXELN System Image

A VAXELN system image is a file created by the System Builder, which
combines the appropriate kernel image and data, system software, user
programs, and shareable images into an image that can be loaded and
executed on a target VAX processor. In general, the System Builder
lays the groundwork for the efficient operation of the kernel by ar-
ranging system components and data to be readily accessible at run
time. For example, the System Builder resolves program references to
locations in shareable images so that this operation does not have to be
performed during the creation of a VAXELN job.

Data stored as part of the image records the user’s input to the System
Builder’s menus. When the image is booted on the target processor,
the kernel establishes characteristics of the run-time system based on
certain of these menu entries. For example, it creates the number of
system pool blocks and page table slots that the user requests on the
System Characteristics Menu.

1=4 Overview: The Role of the VAXELN Kernel

The system image contains an image header (for some booting meth-
ods); the kernel image itself; program images, containing global data
and code; the device list, which contains a series of device descriptions;
and the shareable images against which the programs in the system
image were linked. Chapter 2 describes the components of a system
image and their function in an executing system.

1.2.2 System Initialization

Execution of a VAXELN system is initiated by the VAX processor’s boot-
strap program, called VMB, which loads the system image into physical
memory and transfers control to the kernel. The kernel then begins ex-
ecuting its initialization sequence to establish essential data structures,
create system virtual address space, enable VAX memory management,
configure I/0 adapters, and activate system and application programs
to run as VAXELN jobs.

Chapter 3 describes these stages of system initialization and illustrates
the structure of system virtual address space.

1.2.3 Jobs and Processes

Under VAXELN, most code is executed by entities called processes.

A VAXELN process is defined by its hardware and software context.
The hardware context is the set of processor registers defined by the
VAX architecture. The software context includes some information
unique to the process’s execution and some that the process shares with
other processes that are executing portions of the same program image.
Together, these processes are called a job.

A VAXELN job represents the activation of a program image by the
kernel and a collection of processes. A job is not itself an executable
entity; rather, it is a set of data structures used to manage the creation,
resources, and scheduling of its processes. A job’s collection of processes
contains a single master process and zero or more subprocesses to
execute the program’s code. The master process, which is created as a
part of job creation, executes the program’s main code, beginning at its
transfer address. The master process can in turn create subprocesses
to execute other procedures or functions in the program image. Each
process can then execute independently of all other processes. When
the master process terminates, the job and all its subprocesses are
deleted from the system.

Overview: The Role of the VAXELN Kernel 1-5

All the processes associated with a job share the same PO virtual
address space (through a single PO page table). During job creation,
the kernel maps the program image — its global data and code —
into this PO region. Also stored in this shared region are the job’s
program arguments, its dynamic heap, and its message buffers. For
each process in a job, the kernel creates a private P1 virtual address
space (through a unique P1 page table). This address region maps a
process’s stack space, which can be used to hold local data, procedure
call frames, exception information, and debugger context data.

Chapter 4 describes the data structures and operations associated
with the creation and deletion of jobs and processes. This chapter
also describes the structure and use of job and process virtual address
space.

1.2.4 Software Interrupts, Kernel Synchronization, and Time Services

The kernel exploits VAX hardware resources to manage services such as
job rescheduling, synchronized access to data, and system timekeeping.
The software interrupt mechanism allows the kernel to perform neces-
sary services only as the need arises; for example, job rescheduling is
initiated through an interrupt — the kernel has no need to monitor the
scheduling data base periodically in search of idle jobs. Synchronized
access to the kernel’s data base is enforced through the use of VAX
interrupt priority levels (IPLs) and multiprocessor spinlocks, which are
based on VAX interlocked instructions. The VAX interval clock enables
the kernel to maintain the system time by interrupting with every clock
interval so that the time can be updated by the appropriate interval.

Chapter 5 describes the kernel’s use of these hardware-based mecha-
nisms.

1.2.5 Condition Handling

VAXELN delivers conditions — hardware exceptions, software condi-
tions, and asynchronous exceptions — to processes according to the
VAX Procedure Calling and Condition Handling Standard. This stan-
dard defines condition-handling data structures — the signal and
mechanism arrays — and the ways in which a condition handler is
located and can respond to a condition. In addition, VAXELN exploits
the VAX hardware’s support for asynchronous system traps (ASTs) to
deliver signals asynchronously to a process’s execution.

1-6 Overview: The Role of the VAXELN Kernel

Chapter 6 describes condition handling under VAXELN.

1.2.6 Error and Event Reporting

The VAXELN error-logging subsystem enables the occurrences of pro-
cessor, bus, and device events and errors to be recorded in a local or
remote file for later analysis with the VMS Error Log Utility. Some of
these errors, such as machine checks, require the system to bugcheck
— to be shut down in an orderly manner. Chapter 7 describes the
kernel’s error-logging, bugcheck, and machine-check mechanisms.

1.2.7 Kernel Procedure Dispatching

VAXELN processes manipulate kernel objects and control their ex-
ecution by calling kernel procedures. Each of these procedures has

a public entry point, called its kernel vector, at the beginning of the
kernel image. The procedure’s vector contains the VAX instructions
required to dispatch execution to the actual procedure code, elsewhere
in the kernel image. Most vectors place the caller’s process into kernel
access mode by using the CHMK (Change Mode to Kernel) instruction.
This enables the procedure to execute privileged instructions and alter
kernel data structures. Other vectors simply dispatch execution with
subroutine or branch instruction, so that the procedure executes in the
access mode of the caller. When a procedure has completed, control
returns to the vector, which then returns the procedure’s results and
completion status to the caller.

Chapter 8 describes the structure of these different kernel vectors, how
they dispatch control to kernel procedure code, and how they return
status values to their callers.

1.2.8 Memory Management

VAXELN employs the VAX memory management hardware to perform
virtual address translation using page tables established during system
initialization and job and process creation. Translation is simplified
under VAXELN, because VAXELN systems are always entirely resident
in physical memory. Therefore, no paging from a disk is required before
a page of memory can be accessed after address translation.

Overview: The Role of the VAXELN Kernel 1-7

The kernel’s memory management is based on a simple data base
comprised of bitmaps, which record the allocation state of every page
of physical and virtual memory in the system. The use of bitmaps
minimizes the amount of memory devoted to memory management
itself and simplifies the algorithms used to allocate and deallocate
physical and virtual memory. Bitmaps are also used to control the
allocation of a fixed number of PO and P1 pages tables.

The kernel divides a portion of system memory into fixed-length blocks
called the system dynamic pool. These pool blocks are used in the
creation of kernel objects. Creating an object removes a block from the
available pool; deleting an object returns the block to the pool.

Chapter 9 describes the kernel’s memory management data structures
and operations. The allocation of system pool blocks is also described.

1.2.9 Object Management

Kernel objects provide VAXELN programmers with a simple way of
coding real-time operations such as synchronization, communication,
and device control in their applications. The kernel objects — area,
device, event, message, name, port, process, and semaphore — allow
otherwise complex programming operations to be carried out with
simple calls to kernel procedures.

When an object is created, the kernel assigns it a unique identifier.
When an object is used in a procedure, the information encoded in
the identifier allows the kernel to locate the address of the object in a
table. The kernel manages all objects except ports with the context of
a job. This means that an object identifier can be shared among all the
processes in a job; their object addresses are stored in the job’s private
address table. Port objects, which can represent message destinations
across a local area network (LAN), are managed on a systemwide
basis; therefore, an identifier for a port is valid for the whole system
(and LAN) and contains the network address of the node on which the
port was created. The addresses of port objects are stored in a single
systemwide table.

When the kernel creates an object, it removes a block from the system
pool, marks it with the object type, initializes the object, assigns it an
identifier, stores the address of the object in a table, and returns the
identifier to the calling process. When deleting the object, the kernel
disassociates the object from any processes that might have been using
it, returns the block to the system pool, and removes the address of the
object from the table.

1-8 Overview: The Role of the VAXELN Kernel

Chapter 10 describes the data structures and operations that enable
the kernel to create, manage, and delete kernel objects. The function of
individual objects, however, is described separately. For example, the
function of the event object, used for synchronization, is described in
Chapter 11, Job and Process Synchronization.

1.2.10 Job and Process Scheduling

A process is selected to execute by the kernel’s scheduling mechanism.
Scheduling under VAXELN is based on a simple scheme called pre-
emptive priority-based scheduling. This means that the process with
the highest priority runs before any lower-priority process can run.
Priorities are assigned on a job and process basis. The programmer
assigns a job a priority based on its relative importance in the system.
Within each job, the processes created are then assigned priorities
based on their importance to the fulfillment of the job’s mission. The
scheduler selects a process to run on the basis of its combined job and
process priorities.

In general, the highest-priority process in the highest-priority job runs
until it waits for an event or resource or until a process with a higher
combined priority becomes eligible to run. In the first case, the process
postpones execution so that it may synchronize with another process.
In the second case, the process is preempted from execution. The
scheduler preempts a process only when a higher-priority process must
run; preemption based on execution time never occurs. Programmers,
however, can build time-based preemption into their applications using
simple synchronization techniques.

The kernel maintains a scheduling data base that reflects the schedul-
ing state and priority of every job and process in the system. Much of
this data is summarized in simple bit masks, which allow the kernel
to scan the data base quickly in search of the highest-priority job and
process.

Job and process scheduling is not discussed in detail in this edition of
the VAXELN Internals Manual.

Overview: The Role of the VAXELN Kernel 1-8

1.2.11 Job and Process Synchronization

Synchronization enables a process to coordinate its execution with
real-world events, such as device interrupts, and with other processes.
Synchronization techniques can be used to cause events to occur in
the correct order or to ensure exclusive access to shared data. Under
VAXELN, synchronization points in an application are represented by
kernel objects, and processes synchronize by waiting for these objects to
change state. Area, device, event, port, process, and semaphore objects
can be used to develop the synchronization schemes that real-time
applications require. Chapter 11 describes the kernel objects and other
data structure used for synchronization and the operations provided by
the kernel to allow processes to wait for those objects to change their
states.

1.2.12 Device Handling

Under VAXELN, an I/O channel to a device is represented by a device
object. Creating a device object in a device driver program associates
the device’s interrupt vector in the system control block (SCB) with an
interrupt service routine (ISR) and maps the device’s control/status reg-
isters into system virtual address space accessible to both the ISR and
the device driver. The driver synchronizes access to this device com-
munication region by waiting for the device object to be signaled from
the ISR. When the device interrupts, the kernel dispatches execution to
the ISR to service the interrupt, which may involve moving data to or
from the communication region. Once the interrupt is serviced, the ISR
can inform the driver by signaling the device object, which allows the
waiting driver to continue execution.

Drivers can create multiple device objects to represent separate I/0
channels for the same device. For example, a driver that controls a
serial-line device might create one device object for an input line and
another for an output line. Each device function, then, can have a
separate ISR and driver process to service its operation. Device objects
also support polled 1/0, a technique used for drivers that control devices
without the use of interrupts.

The kernel’s support for device handling is not discussed in detail in
this edition of the VAXELN Internals Manual; however, the kernel data
structures that support device handling — the adapter control block,
the device object, and the interrupt dispatch block — are illustrated
and described in Sections B.2, B.5, and B.9, respectively.

1-10 Overview: The Role of the VAXELN Kernel

1.2.13

Interjob Communication

Independently executing VAXELN jobs can communicate with one an-
other using areas and messages. Area objects represent a contiguous
region of physical memory that can be accessed, using virtual ad-
dresses, by multiple jobs in a VAXELN system. Access to the shared
area is controlled through a binary semaphore built into the area con-
trol structures. Jobs can use the area as an efficient way to share data
or to synchronize execution using only the area’s semaphore. The ker-
nel’s support for shared areas is not discussed in detail in this edition
of this manual; however, the data structures that support areas — the
area control block and the area object — are described in Sections B.1
and B.3, respectively.

VAXELN messages can be sent and received between processes, jobs,
and DECnet nodes in a local area network. A message is a data buffer
in physical memory represented by a message object. Messages are
transmitted to queues called ports. Ports can be given names that
are known on a local node or throughout a local area network. Ports
can be connected in logical links called circuits. Communication over
circuit connections uses a protocol that guarantees the orderly delivery
of messages over an intact link.

To send a message to a local port, the kernel simply unmaps the data
buffer from the sending job’s virtual address space and queues it to
the destination port. When the process waiting for a message in the
port receives the message, the kernel maps the message buffer into the
receiving job’s virtual address space. To send a message to a remote
port, the kernel uses the local-sending method to transmit the message
to the local node’s network service. The network service then uses its
datalink driver to route the message across the physical network link
to the remote node. At the destination node, the local network service
sends the message locally to the kernel, which then queues the message
into the destination port.

The kernel’s support for message passing is not discussed in detail in
this edition of the VAXELN Internals Manual; however, the kernel data
structures that support message passing — the message, name, and
port objects — are illustrated and described in Sections B.11, B.12, and
B.18, respectively. Two structures involved in circuit connections and
name support — the network connection message and the name service
message — are described in Sections B.13 and B.14, respectively.

Overview: The Role of the VAXELN Kernel 1-11

1.3 Notes on the Kernel and the VAX Hardware

The VAXELN Kernel takes ready advantage of many features provided
by the VAX processor. The richness and advantages of the VAX ar-
chitecture are documented in detail in the VAX Architecture Reference
Manual and have been used extensively by other VAX-based software
executives, such as the VMS operating system (see VAX/VMS Internals
and Data Structures). The following notes highlight features of the
VAX architecture and hardware used by the VAXELN Kernel:

* System bootstrap. VAXELN employs the generic VAX bootstrap
program called VMB to load a system image over a network link
or from disk, tape, or read-only memory. Once VMB has loaded the
image into main memory, it transfers control to the kernel to begin
system initialization.

¢ Memory management. VAXELN employs the VAX memory manage-
ment hardware to perform virtual address translation. Because the
kernel does not require support for memory paging, certain aspects
of this mechanism, such as the page-fault mechanism, are unused.

* Protection mechanisms. The VAX memory management and protec-
tion scheme are used to protect code and data used by the kernel
and kernel-mode programs from user-mode programs. Note that
VAXELN requires only two of the four VAX access-control modes:
kernel and user. Kernel procedures, ISRs, exception service rou-
tines, and system jobs, such as device drivers usually execute in
kernel mode. The user can specify the access mode of a program
by using the System Builder. Implicit protection is built into spe-
cial instructions that can only be executed from kernel mode, such
as MTPR (Move to Privileged Register), LDPCTX (Load Process
Context), and HALT.

¢ Exceptions, interrupts, and the REI (Return from Exception or
Interrupt) instruction. The VAX exception and interrupt mecha-
nisms are critical to the operation of the kernel. The exception
mechanism transfers control to a specific service routine when the
hardware detects a specific anomaly during the execution of an
instruction. The interrupt mechanism transfers control to a specific
service routine when a software- or hardware-generated interrupt
occurs. The REI instruction provides a common exit path for both
mechanisms. REI also offers the only valid means of returning
access mode from kernel to user mode.

1-12 Overview: The Role of the VAXELN Kernel

Interrupt priority level (IPL). The kernel raises the processor’s IPL
to block interrupts of equal or lower levels. IPL is also elevated

to synchronize access to kernel data. The assignment of various
hardware and software interrupts to specific IPL values establishes
an order of importance to the interrupt services that the kernel
performs.

Asynchronous system traps (AST). The VAX AST mechanism allows
the execution of a process to be diverted asynchronously using the
ASTLVL processor register and the REI instruction. VAXELN uses
this technique to deliver called asynchronous exceptions, which
supply services such as the process-quit signal and power-failure
notification.

Procedure-calling mechanism. The VAX general-purpose calling
mechanism is the primary path into the kernel from system and
user programs. The kernel’s services are coded as VAX procedures,
so that they can potentially be called from any higher-level VAX
language.

Process structure. The VAX architecture defines a data structure
called a hardware process control block that contains copies of
all a process’s registers when a process is not executing. Under
VAXELN, this structure is commonly referred to as the hardware
context block, or PTX. When a process is selected for execution,
the contents of its PTX are copied into the actual registers inside
the processor with a single instruction, LDPCTX. A corresponding
instruction, SVPCTX, saves the contents of the general registers
when the process is removed from execution.

Process and system context. Normal execution under VAXELN
takes place within the bounds of a process, a state called process
context. Most kernel procedures and exception service routines
execute in this context.

Some portions of the kernel, however, execute outside the context
of a specific process. This limited-context state is called system or
interrupt context, because the only stack available in this context
is the systemwide interrupt stack. Interrupt service routines are
the most common code to execute in system context. Portions of the
initialization sequence execute in this state because no process yet
exists. The scheduler also executes on the interrupt stack between
the time that it removes one process from execution and places
another into execution. Most kernel procedures require process
context for execution and therefore cannot be called from code that
may execute outside of process context, such as device ISRs.

Overview: The Role of the VAXELN Kernel 1-13

¢ Multiprocessing. Certain VAX products, such as the VAX 8000 and
VAX 6000 series, can provide multiprocessing configurations. The
kernel takes advantage of these configurations with a mechanism
called tightly coupled symmetric multiprocessing. This scheme
provides one copy of the kernel and its data in memory shared by
all processors. Synchronization techniques built into the kernel
ensure the integrity of system data, and the scheduling software
enables different jobs to execute concurrently on the multiple
processors.

Another scheme, called closely coupled symmetric multiprocessing,
allows multiple KA80O single-board processors to be linked together
with a VAX 8000- or VAX 6000-series processor over an I/0O bus.
Each KA800 processor runs a private VAXELN system and can
communicate with the other processors through shared memory
and VAXELN messages. The primary processor in the system can
run under VAXELN or under VMS using the VAX RTA software.
The VAXELN Run-Time Facilities Guide provides more information
on these multiprocessing configurations.

1-14 Overview: The Role of the VAXELN Kernel

Chapter 2

The VAXELN SystemImage

A VAXELN application, or part of a distributed application, exists on a
target VAX processor as a system image. A VAXELN system image is
not in fact a VAX executable image; rather, it is a composite of system
and user code and data preceded by an image header appropriate for
the system’s intended boot method. A system image may contain many
individual executable and shareable images accompanied by blocks

of system and program information required by the VAXELN Kernel.
These images and information are placed in the system image by the
VAXELN System Builder.

Since all nondynamic components of a VAXELN system reside in the
system image, familiarity with its structure is basic to understand-
ing the dynamic operation of the kernel. This chapter first describes
how the System Builder creates the system image (Section 2.1) then
describes each major element in the image:

* The image header, which enables a system to be booted from certain
devices (Section 2.2)

¢ The kernel image, which contains the kernel’s data and code
(Section 2.3)

¢ Program images, which contain code and data for system and user
programs (Section 2.4)

¢ The device list, which contains information about the devices con-
figured for a system (Section 2.5)

¢ Shareable images, which contain code and data that can be shared
among the programs in a system image (Section 2.6)

The VAXELN System Image 2-1

2.1 Role of the System Builder

The VAXELN System Builder is a utility that runs on the host develop-
ment system in response to the EBUILD command. The main function
of the utility is to construct the system image specified by the user.
The System Builder accepts user input interactively through a series of
menus and from a data file that contains information generated during
earlier interactive sessions. The System Builder potentially generates
three output files:

¢ The system image file containing the system to be executed on the
target computer

* A map file describing the content of the system image

¢ A data file recording the menu settings made during an interactive
session

In creating a system image, the System Builder performs, to some
degree, the roles that the SYSGEN utility, the linker, and the image
activator play under the VMS operating system.

The System Builder accepts menu input specifying the following aspects
of a VAXELN system:

¢ Target processor. The identity of the target processor determines
which kernel image the system image will contain.

* System characteristics. These menu entries determine global as-
pects of the completed system, including the availability of the
debugger, the console, and VAX instruction emulation; the boot
method for the system; the maximum number of jobs and subpro-
cesses that can exist simultaneously in the system and the largest
amount of virtual memory available to those jobs and processes;
the number of system pool blocks and message ports available; and
the size of the interrupt stack and dynamically allocated system
memory.

* Network characteristics. These entries determine the nature of a
system’s participation in a local area network.

* Program descriptions. These entries specify the name and char-
acteristics of a program image that will be incorporated into the
system image. Characteristics include whether the program will be
started up automatically at system initialization, whether the de-
bugger will take initial control, the execution mode of the program,
the priorities assigned to the job and processes that will execute the

2-2 The VAXELN System Image

program’s code, and any textual arguments passed to the job as it
is created.

* Device descriptions. These entries determine the characteristics of
a device that can be accessed from the executing system, such as
the name of the device, its register and interrupt vector addresses,
and its hardware interrupt priority.

¢ Terminal descriptions. These entries determine the characteristics
of a terminal or other serial device that can communicate with the
executing system, such as its controller type, baud rate, and parity.

* Console characteristics. These entries determine the setup of the
console terminal attached to the target processor.

* Error log characteristics. These entries determine the destination
of error log entries and the number of error log buffers available to
the error logging service.

¢ DECwindows Server characteristics. These entries determine the
configuration of the DECwindows Server on a VAXstation target.

The System Builder supplies defaults for many of these characteristics.
In addition, the System Builder supplies program and device descrip-
tions required by the system but not explicitly requested by the user.
For example, if a user requests remote debugging capability but does
not request the inclusion of the Network Service, the System Builder
determines that the service is required, builds a program description
for it, and includes its image in the system image.

In creating a system image, the System Builder takes the following

steps:

1. Obtains the kernel image appropriate for the selected target proces-
sor

2. Creates a list of descriptors describing the programs to be included
in the image

3. Creates a list of configuration records describing the devices to be
included in the system

4. Creates a shareable image table describing the shareable images
referenced by programs and other shareable images within the
system

5. Copies the programs, program descriptors, device and terminal
descriptors, shareable image table, and shareable images into the
system image

6. Initializes parameter and data cells within the kernel

The VAXELN System Image 2-3

7. Resolves the program’s references to shareable images by adjusting
the referenced addresses to reflect the location of the shareable
image within program or system address space, a process called
address relocation

8. Writes out the completed system image and, optionally, a map file
describing the system image, and an updated data file

The resulting system image is structured along the lines of Figure 2—-1.

Table 2-1 briefly defines each element of the system image. These
elements are described in greater detail in subsequent sections.

24 The VAXELN System Image

Figure 2-1: VAXELN System image

System Image Header
(Excluding Disk)

Kernel Vectors

Kernel Data

>~ Kernel Image
Kernel Parameters

Kernel Code

Program #1 Data

Program #1 Code

> Program Images

Program #n Data

Program #n Code

Program Descriptors

(Including KSDs) Program List

Device Descriptors Device List

Sh ble |
aDI:;:ri;toT:ge Shareable Image

(Including KSDs) Table

Shareable Image #1

System and User
Shareable images

Shareable Image #n

MLO-003203

The VAXELN System Image 2-5

Table 2-1: Elements of a System Image

Element

Description

System image header

Kernel vectors

Kernel data

Kernel parameters

Kernel code

Program data and code

Program descriptors

2-6 The VAXELN System Image

A page containing information used by the VAX
VMB bootstrap program to load the system image
into a processor’s memory. The need for and type of
header is determined by the boot method selected
for the system. Systems booted from ROM or over
the network require an image header; those booted
from disk or tape do not.

Entry points for KER$ kernel procedures. These
vectors transfer control to the location of the actual
procedure code by executing a Change Mode to
Kernel (CHMK) instruction.

Cells that hold global data elements for use by the
kernel and its support routines, such as listheads,
Boolean flags, and the system time.

Cells that hold values established by the System
Builder that record menu settings and other sys-
temwide values, including the size of the current
system and the locations of program and device
descriptors within the system image.

The executable code of the kernel. The code starts
with the kernel’s initialization sequence and con-
tains, among other routines, the code for the kernel
procedures whose entry points appear in the kernel
vectors.

The data and executable code of the user’s pro-
grams and support programs such as device
drivers. (Programs linked against object libraries
also contain the code and data of the routines they
reference in those libraries.)

A list of elements describing the programs loaded
into the system image by the System Builder.
Each program descriptor is accompanied by the
text of parameters to be passed to the program
and a series of kernel section descriptors (KSDs)
that describe the program’s image sections. Taken
together, this information allows the kernel to
create a job to execute the program’s code.

Table 2-1 (Cont.): Elements of a System Image

Element Description

Device descriptors A list of elements describing the devices to be
supported by the system.

Shareable image de- A list of elements describing the shareable im-

scriptors ages loaded into the system image by the System

Builder. Each descriptor is accompanied by a se-
ries of KSDs that describe the shareable image’s
image sections. The information in the descriptors
is used in address relocation for dynamically loaded
programs that reference shareable images. The
KSDs enable the kernel to map writeable shareable
images into a referencing program’s address space.

Shareable images The actual code and data for the shareable im-

ages loaded into the system image by the System
Builder. In the case of VAXELN run-time libraries,
the code is preceded by a block of transfer vectors
through which the actual code of the run-time pro-
cedure is located. The images included are those
referenced by the programs in the program list
(and linked against shareable libraries), those spec-
ified on the Guaranteed Image List, the VAXELN
console I/O routines, and VAX instruction emula-
tion images selected on the System Characteristics
Menu.

If the /MAP and /FULL qualifiers are specified on the EBUILD com-
mand line, the System Builder produces a map file describing the
contents and layout of the system image. In a full system map, the
following information is provided:

The name of the system image file and the time of its creation.

The name of the VAXELN Kernel image included and the starting
address of the vector, parameter, and code blocks.

Names of programs included in the system, including system pro-
grams (such as device drivers) that are not explicitly specified on
the Program Description Menu. The characteristics of the program
(for example, its mode and job priority) and its image sections
(section type, base address, and size) are shown. If the program
references any writeable shareable images — which will be mapped
into the program’s address space — those images are identified as
well.

The VAXELN System Image 2-7

* Device descriptions reflecting the device entries created on the
Device Description Menu and descriptions supplied by the System
Builder.

* Terminal descriptions reflecting the terminal entries created on
the Terminal Description Menu and showing the characteristics
selected for each terminal.

* Names of shareable images implicitly or explicitly included in the
system image. The descriptions show the image identification,
whether the image is mapped into a referencing program’s address
space (that is, whether the image is writeable), and the type, base
system virtual address, and size of the shareable image sections.

* Network characteristics, reflecting the entries on the Network Node
Characteristics Menu.

¢ System characteristics, reflecting the entries on the System
Characteristics Menu.

* DECwindows Server characteristics, reflecting the entries on the
DECwindows Server Characteristics Menu.

* The size of the system image in pages and bytes.
* The System Builder command line.

Consulting a sample System Builder map can help illuminate the
structure of the system image as discussed in the sections that follow.

2.2 System Image Header

The user selects the boot method for a VAXELN system on the System
Characteristics Menu, selecting disk, ROM, or down-line loading. The
menu selection determines whether the system image will have a
system image header and the type of that header. Only Q-bus targets
can be booted from ROM, using the MRV11 Q-bus module.

If a VAXELN system image is booted from ROM or over the network,
the System Builder adds a one-page header to the start of the system
image, preceding the kernel image. For ROM systems, a Q-bus ROM
header is written; for network systems, a standard VMS image header
is written. Systems to be booted from disk or tape require no image
header.

2-8 The VAXELN System Image

The system image header supplies the information required by the
bootstrap loader — such as the size of the image — to load the system
image into the memory of the target computer. Down-line loading of a
target is performed using the DECnet maintenance operation protocol
(MOP). The down-line loading sequence (initiated by a MOP message
requesting a program load from the target) expects to find an ordinary
VMS image header.

The bootstrap sequence on a Q-bus target will boot the VAXELN system
from the MRV11 PROM module if it finds a special ROM footprint on

a 4K-byte boundary in the target’s memory. This unique bit pattern is
provided by the ROM image header supplied by the System Builder.

Systems that boot from disk or tape devices require no image header.
Instead, the system must be copied contiguously to the [SYS0.SYSEXE]
directory on the boot device, an operation performed by the COPYSYS
command procedure in the ELN$ directory of the host system. As

the system image is copied to the boot device, its name is changed to
SYSBOOT.EXE, the name of the VAX secondary bootstrap program.

2.3 Kernel Image: Vectors, Data, Parameters, and Code

As shown in Figure 2-1, each kernel image consists of four elements:
vectors, data, parameters, and code. Early in its operation, the System
Builder copies the appropriate kernel image from the ELN$ directory
to the system image file. As the kernel image is copied, the System
Builder strips off the original image header created by the VMS Linker.

The selection a user makes on the Select Target Processor Menu de-
termines which version of the VAXELN Kernel will be written to the
system image by the System Builder. Table 2-2 shows the versions of
the kernel and the processors supported by each one.

Table 2-2: VAXELN Kernel Images

Image Processors Supported

4NNKER MicroVAX 2000, VAXstation 2000, VAXstation 3100

QBUSKER MicroVAX I, MicroVAX II, MicroVAX 3000 Series,
VAXstation II/GPX, VAXstation 3200, VAXstation 3500,
KA620

UBUSKER VAX-11/725, VAX~11/730, VAX-11/750

The VAXELN System Image 2-9

Table 2-2 (Cont.): VAXELN Kernel Images

Image Processors Supported

6CCKER VAX 6000 Series

8SSKER VAX 8200 Series

SNNKER VAX 8500 Series, VAX 8700, VAX 8810
800KER KAB800 Single-board computer (VAX/RTA)

MP8800KER VAX 8800, VAX 8820-N

In general, each kernel supports a class of target processors. The
criterion that differentiates a class may be bus architecture, as in
the case of the QBUS and UBUS kernels, or it may be processor-
specific differences within a bus architecture, as in the case of several
of the VAXBI-based versions of the kernel, such as SNNKER.EXE and
MP8800KER.EXE, which differ in their support of multiprocessing.

The different kernels are created when the kernel is assembled, by the
selective inclusion of processor- and/or bus-specific initialization, error-
logging, and machine-check modules. At run time, hardware-dependent
routines are executed through branches to generic subroutine entry
points; the code that appears in those subroutines depends on which
processor-specific module was included at kernel creation. Processor
dependence is largely avoided in the kernel’s common code to minimize
the kernel’s need to determine the processor type at run time.

Each kernel image file is accompanied in the ELN$ area by a linker
map file produced when the kernel image was linked. The linker map
file describes the sizes, locations, and attributes of the kernel’s program
sections — one section each for vectors, data, parameters, and code.
Also listed in the map file are the definitions of the symbols and labels
that appear throughout the source code for the kernel.

2.3.1 Kernel Vectors

The kernel vectors represent the first stage in dispatching calls to
kernel procedures. The vector block occupies the first two pages of
the kernel image; when a VAXELN system begins execution and the
kernel is mapped to SO space, the vector block begins at system virtual
address 800000001g. The code for the kernel vectors spans three source
modules, SYSVECTOR, VECTORTAB, and VECTOREND. (You can

2-10 The VAXELN System Image

determine the exact starting addresses of the various sections of the
kernel by examining the appropriate kernel linker map file.)

The vector block contains a series of quadword-aligned entry points to
the kernel procedures. Each vector consists of the register entry mask
for the procedure, an instruction to transfer control to the procedure,
and a variable number of instructions to effect the return of values and
control to the caller. The following code fragment shows the vector for
the KER$RECEIVE procedure, a typical instance:

KERSRECEIVE: :
.WORD ~XFFC
CHMK #29

; entry mask for registers R2 to R11l
; entry 29 in the CHMK dispatch table
MOVL R1, Q@8 (AP) ; return message object identifier
MOVL R2, @12 (AP) ; return address of message buffer
MOVL R3, @16 (AP) ; return size of message in bytes
BRW KER$RETURN_STATUS

; check status and return to caller

The vector is entered by means of a CALL instruction, and the pro-
cedure entry mask causes registers R2 through R11 to be saved for
the caller. Control is then transferred to the code for KER$RECEIVE
through the CHMK instruction. After KER$RECEIVE has executed,
control is returned to the instruction following the dispatch instruction,
and the values returned by the procedures in registers R1, R2, and R3
are returned to the caller by means of pointers to writeable variables
in the argument list. Finally, control branches to the local subroutine
KER$RETURN_STATUS, which checks the status value returned by
KER$RECEIVE, and returns control to the caller via a Return (RET)
instruction. The dispatching of kernel procedure calls is described in
detail in Chapter 8.

The vector block is identical for all versions of the kernel as well as

all releases of the VAXELN software. This way, user programs need
not be relinked to use different versions of the kernel or the VAXELN
software; only rebuilding the system image is required. If new kernel
procedures are added, their vectors are inserted at the end of the vector
block, leaving the locations of previously existing vectors unaltered.

The VAXELN System Image 2-11

2.3.2 Kernel Data

The pages in the kernel image devoted to writeable data are a repos-
itory for any values that must be globally available to programs and
routines executing throughout the system. This global data block,
defined in module SYSTEMDAT, is mapped to a base system virtual
address of 80000400;¢ and occupies the four pages of the kernel follow-
ing the vector block. When the system image resides in a MicroVAX I
PROM module, the kernel’s initialization routine copies the data block
in PROM to the first available pages in the physical memory of the
target computer.

The values stored in the data block can be used as constants or as
storage for values that are updated during execution. For example, the
maximum virtual memory functions as a constant, whereas the system
time is updated constantly during execution.

Table A-2 shows the names and uses of the cells within the data block.
Kernel data is directly accessible from kernel routines. Individual
elements in the data block can also be accessed from a user program
if the items to be referenced are declared to be external at module
level and the program is linked against RTL.OLB (the locations of the
KERS$ data items are defined in the KER$DATA object module within
RTL.OLB).

2.3.3 Kernel Parameters

When the System Builder parses the input from a data file and an
interactive menu session, it writes the resulting values and charac-
teristics to an internal buffer. As the kernel image is being copied to
the system image, the System Builder transfers the contents of the
internal buffer to the kernel parameter block. During later processing,
other values, such as the size of the system image, are written to the
parameter block.

The kernel parameters, defined in module PARAMETER (and described
in Table A-1), allow the System Builder to transmit information about
the system image to the kernel. During execution, the kernel can
consult values in the parameter block to determine, for example, the
size of the system image and whether the console terminal is present
in the system. Some parameters, namely those with the word “initial”
in their names, are copied during system initialization from the read-
only parameter block to the writeable data block. For example, the

2-12 The VAXELN System Image

parameter KER$GW_PO_INITIAL_SLOT_SIZE is copied to the data
cell KER$GW_P0_SLOT_SIZE.

The parameter block, occupying approximately one-quarter of a page,
is mapped to system virtual address 80000C004¢. It is followed imme-
diately by a read-only image section containing the executable code for
the kernel.

2.3.4 Kernel Code

The actual code for the VAXELN Kernel follows the kernel parameter
block in the system image. The kernel code starts at a system virtual
address midway through the sixth page of the kernel image, approxi-
mately 80000C981¢. At run time, the kernel code executes in the VAX
kernel access mode.

The first code to appear is the system initialization sequence, in module
INITIAL. The first part of the module contains a table that acts as a
prototype for the system control block (SCB) that is built at a later
stage of initialization. Following this table, the executable code for the
kernel begins at the global label KER$START. When the primary boot-
strap program transfers control to the start of the kernel image — the
first page of kernel vectors — it encounters the following instruction:

BRW KER$START

This instruction transfers control to the start of the initialization code,
whence execution continues.

The remainder of the kernel code occupies approximately sixty pages
— the exact size depends on the version of the kernel — and is di-
vided into two image sections. The first of these sections contains
nonprocessor-specific kernel procedures and routines that must fall
within the range of the signed-word displacement (32K bytes forward
or backward) used by the kernel procedure dispatcher (see Chapter 8,
Kernel Procedures and Procedure Dispatching). The second image sec-
tion contains internal processor-specific code that is entered directly
through Jump (JMP) instructions and may therefore reside at ad-
dresses beyond the range of the word displacement required by the first
image section.

Appearing throughout the first code section are the internal entry

points and instructions for the kernel procedures whose public entry
points appear in the vector block. The remainder of the code in the
kernel contains the entry points and instructions for procedures and

The VAXELN System Image 2-13

subroutines used by the kernel for such operations as scheduling,
resource management, device control, and condition handling.

2.4 Program Images

One of the chief roles of the System Builder is to incorporate the
programs that the user specifies on the Program Description Menu into
the system image. Other programs required for the system’s operation
but not explicitly specified by the user, such as debugger, error-logging,
and device driver programs, must also be identified and included in the
system image.

Processing user and system program images involves more than simply
copying the images to the system image file. To include a program

in the system image, the System Builder must perform the following
tasks:

Create a descriptor for each program to record information about
the program such as its name, its execution mode, the size of its
stack, its transfer address, its default job and process priorities,
the message limit for its job port, and the location in memory

of its program arguments. Some of this information comes from
the Program Description Menu, some from the program image.
Descriptors for system programs such as device drivers are created
from information internal to the System Builder. The program
descriptor is then inserted into a global list of descriptors for the
entire system.

Parse the arguments for each program as specified on the menu,
place the text of the argument in a program parameter block, and
insert the block into a list of parameter blocks for the program. The
parameter blocks for a program are considered part of the program
descriptor.

Open the program image file, read each image section descriptor
(ISD), translate each ISD into a kernel section descriptor (KSD),
link the KSD to the program descriptor, and copy each image
section to the system image file. As they are created, the KSDs are
built into a block, and the address of the first KSD is stored in the
program descriptor. If the program refers to any shareable images,
steps are taken to load these images into the system image as well.

2-14 The VAXELN System Image

While the System Builder processes an image, it keeps a running
account of the current virtual address within the system image at
which each element being processed will appear. Thus, the run-time
virtual address of any system structure is known to the System Builder
and can be used to establish pointers within its own and the kernel’s
data structures.

The following sections describe the data structures and operations the
System Builder uses in processing an image.

2.4.1 Data Structures for Image Processing

The System Builder analyzes and creates a number of data structures
in the course of incorporating an executable image (program) into a
VAXELN system image. Those structures fall into the following classes:

* The program descriptors and program list. Program descriptors
are kernel data structures that record information about a program
image included in the VAXELN system. All program descriptors
are linked into a list called the program list, which the kernel uses
to look up information about the images in the system.

* Structures within the VMS program image. To incorporate an ex-
ecutable image into the system image, the System Builder must
analyze data structures written to the program image by the
VMS Linker. The most significant of these structures is the image
head~r, which contains information describing the image. Part of
the header consists of image section descriptors (ISDs) that describe
the makeup and virtual memory requirements of the program sec-
tions within the image. Using the ISDs, the System Builder creates
a set of kernel section descriptors (KSDs) to describe the image to
the kernel at run time.

* Kernel section descriptors (KSDs). Created from the ISDs within
the program image header and associated with a program descrip-
tor, KSDs describe the makeup and virtual memory requirements of
a program’s image sections as they exist within the system image.
The kernel uses KSDs at run time to map a program image into a
VAXELN job’s virtual address space, where it can be executed.

The following sections describe these structures in more detail.

The VAXELN System Image 2-15

2.4.1.1 Program Descriptors and the Program List

Each program image in the system image — whether a user program
or a system program — is represented by a program descriptor. The
information stored in the descriptor during the system build is used
at run time by the KER$CREATE_JOB kernel procedure to map the
program into the job’s virtual address space and to make the program
arguments available to the job. The system start-up job also uses the
descriptors to determine which programs must be created and run
during system initialization.

The System Builder inserts the program descriptors into a list and
copies the list to a location in the system image following the actual
code and data for the programs. The system virtual address of the
first program descriptor in the list is stored at the location KER$GA_
PROGRAM in the kernel’s parameter block; this value is copied to the
location KER$GA_PROGRAM_LIST in the kernel data block during
system initialization.

A program descriptor contains the fields shown in Table 2-3. A good
portion of this information is derived from the descriptions entered on
the Program Description Menu. Other items, such as the address of
the first KSD and program parameters, are determined and recorded
during the system build.

Table 2-3: Program Descriptor Fields

Field Meaning

PRG$L_NEXT The Address of the next program descriptor

PRG$W_CPU_MASK The processor ineligibility mask (used to prohibit the pro-
gram from running on certain processors in a multiprocess-
ing system)

PRG$W_KERNEL_STACK The size in words of the kernel stack

PRG$L_TRANSFER The transfer address of the program in user address space

PRG$L_MESSAGE_LIMIT The job port message limit

PRG$W_USER_STACK The starting size of the user stack

PRG$W_JOB_PARAMETER The offset to the first job parameter block

PRG$L_KSD The address of the first kernel section descriptor in the list

of KSDs

2-16 The VAXELN System Image

Table 2-3 (Cont.): Program Descriptor Fields

Field

Meaning

PRG$B_JOB_PARAMETER_
COUNT

PRG$B_MODE
PRG$B_JOB_PRIORITY
PRG$B_PROCESS_PRIORITY

PRG$B_OPTION_FLAGS

PRG$W_REF_COUNT

PRG$T_NAME

The count of job parameters

The program mode (kernel or user)
The job priority

The default process priority for the master process and
subprocesses

A bit field specifying other characteristics of the program, as
follows:

Bit Meaning When Set

PRG$V_AUTO_START Start program at system start-
up (that is, “run”)

PRG$V_SEQ_INITIAL Program must be initialized
(sequential start-up, that is,
“init required”)

PRG$V_START DEBUG Start debugger when job is

created
PRG$V_POWER_ Raise an exception during
RECOVERY power-failure recovery
PRG$V_DELETED Dynamically loaded program

should be deleted from system
when reference count reaches 0

PRG$V_DYNAMIC_ Program was dynamically loaded
PROGRAM

PRG$V_DEBUG_WARM Debugger is present but do not
pass it control on job creation

The number of jobs executing this program’s code if the
program was dynamically loaded

The string descriptor containing the size of the program’s
name and the text of the name

As each program descriptor is created by the System Builder, the
program arguments entered on the menu are separated and entered
into separate parameter blocks. The fields in the parameter block are
shown in Table 2—4. All the parameter blocks for the program are
linked through the JPB$A_NEXT field. The byte offset from the base of

The VAXELN System Image 2-17

the program descriptor to the first parameter block is inserted into the
PRG$W_JOB_PARAMETER field of the program descriptor, and the
number of parameters is recorded in the descriptor as PRG$B_JOB_
PARAMETER_COUNT.

Table 2-4: Job Parameter Block Fields

Field Meaning

JPB$A_NEXT The address of next job parameter block

JPBS$L_SIZE The byte count for the parameter string
stored in this JPB

JPB$L_TOTAL_SIZE The total byte count for all the parameter
strings in all the JPBs for this program

JPB$B_TOTAL_COUNT The number of program arguments, stored
in the first JPB only

JPB$T_PARAMETER The parameter string text, up to 100

characters in length

When a program is created as a job, the kernel copies the program’s
parameters into the job’s virtual address space. The number of pa-
rameters and their text can be returned to the program through
the run-time library routines ELN$PROGRAM_ARGUMENT and
ELN$PROGRAM_ARGUMENT_COUNT.

Figure 2-2 illustrates the relationships among the elements in the pro-

gram list and its related structures — program descriptors, parameter
blocks, and KSDs (described in Section 2.4.1.3).

Although system programs usually do not appear explicitly on the
Program Description Menu, they too require and receive program

descriptors. The following system programs or classes of programs
require these internally created program descriptors:

* Local and remote debuggers

* Network device drivers, such as XQDRIVER.EXE

¢ File access listener (FAL)

¢ Authorization Service

¢ Terminal drivers (such as DMBDRIVER.EXE)

2-18 The VAXELN System Image

Figure 2-2: Program List and Program Descriptors

Program List KER$GA_PROGRAM_LIST

PRG$L_NEXT e Descriptor for 1st Program
Y

PRGSL_NEXT e Descriptor for Next Program
_ Y

. Descriptor for Last Program
PRG$L_NEXT = 0 = End of List

PRG$W_JOB_PARAMETER 0——’

PRG$L_KSD e

PRG$B_JOB_PARAMETER_COUNT = 1

Job Parameter Block for This Program

- - Image Body for
First KSD for This Program Last Program

| KSD$L SYSTEM VA |

Last KSD for This Program
['KSD$L SYSTEM VA |

MLO-003204

* Console driver

e LAT driver

¢ DECwindows Server

e DECwindows terminal and console emulators

As it does with user programs, the System Builder creates parame-
ter blocks for system programs. For example, system device drivers
are passed appropriate device names as their program arguments.
During its initialization, the driver program retrieves the program
argument and uses that text — the device name — in a call to the
KERSCREATE_DEVICE kernel procedure. Thus, the use of program

The VAXELN System Image 2-19

arguments allows the driver to access the device description for the
device it supports.

Once the System Builder has assembled a complete program list, in
which all specified user programs and required system programs have
been included, the System Builder sorts the list into job priority order
based on job start-up characteristics. In other words, the program
descriptors are sorted into three classes within the program list:

1. Programs that require initialization at system start-up. These
are the programs for which the Init Required characteristic has
been selected in their program descriptions (that is, the PRG$V_
SEQ_INITIAL bit is set in the PRG$B_OPTION_FLAGS field).
The System Builder places all such programs at the head of the
program list in priority order — the highest priority job (with 0
as the highest priority) comes first. Initialization jobs with equal
priorities retain their positions relative to one another in the list.
No subsequent initialization program will be created until the
previous program exits or calls the KER$SINITIALIZATION_DONE
kernel procedure.

2. Programs that must be created at system start-up. These are the
programs for which the Run characteristic has been selected in
their program descriptions (that is, the PRG$V_AUTO_START bit
is set in the PRG$B_OPTION_FLAGS field). The System Builder
places all such programs immediately after the initialization jobs
in the program list in priority order. Auto-start jobs with equal
priorities retain their positions relative to one another in the list.

3. All other programs. Programs that require neither initialization
nor automatic start-up appear at the end of the program list in the
order in which they were processed.

As a special case, the System Builder checks to make sure that the
program descriptor for the debugger component on the target computer
appears before the descriptors of any programs that require debuggmg
(PRG$V_START_DEBUG bit set), regardless of job priority.

This highly structured program list simplifies the task of the start-up
job that runs during system initialization. The start-up job (described
more fully in Chapter 3) is the first job created by the kernel as a
VAXELN system boots. Its mission is to walk the program descriptors
in the program list and create a job for each program it encounters
for which the initialization or auto-start bit is set. Thus, the highest-
priority initialization program will be the first job created by the start-
up job. For example, in networked applications, this first job is usually
the network device driver, which runs at a job priority of 1.

2-20 The VAXELN System Image

The complete and ordered program list is used throughout the System
Builder’s subsequent operations. At run time, the program list is used
in a number of kernel operations and by several VAXELN utilities.

2.4.1.2 VMS Image Structures Used in Image Processing

The program images processed by the System Builder are standard
VMS images, that is, images generated by the VMS Linker. An image
includes the following components, illustrated in Figure 2-3:

* The image header identifies the image, describes its characteristics,
and specifies the locations within the image file of other image
elements, such as the fixup data for address relocation. Appended
to a fixed portion of the header are the variable-length ISDs that
describe the characteristics of the image sections in the image body.

¢ The image body contains the actual code and data for the program
in the form of distinct page-aligned image sections. An image
section is an assemblage of program sections with like attributes.
Each image section in the image file is described by an ISD in the
image header.

* The fixup vector is a block containing data required to perform
address relocation. Fixup data is stored in an image section and is
described by an ISD.

The image header contains the bulk of the information the System
Builder needs to process images. For example, the header provides
information that allows the image to be copied from the image file into
the VAXELN system image file.

Of particular importance within the image header are the ISDs, which
appear at the end of the header. Figure 2—4 shows the general layout
of an ISD. As shown in the figure, the length of an ISD depends on the
type of image section it describes.

The VAXELN System Image 2-21

Figure 2-3: Structure of a VMS Image

Image Header

Fixed Portion of Image Header

Fixed Portion of
Image Header

Offset to B Size of Header
Offset to D Offset to C
Offset to E
Minor ID Major ID
Image | Header
Type Biocks

Transfer Address
Array

Debug and Global
Symbol Table Offsets

Image Name and
IDENT Strings

Image Fiags

Patch Information (Only
Found in Patched Images)

Image Section
Descriptors

Virtual Addresses of
Fixup Information

;-
/A
/
/
/
/ B
/
/
Image Flie / C
Image Header D
\
Image Body
\ E
\
\
Fixup Information \
\ F
Debug and Other _[
Symbol Tables

MLO-003206

Each ISD describes a portion of the image’s virtual address space,
including its size and base address, as determined by the VMS Linker.
The contents of an ISD’s fields vary to reflect the characteristics of the
image section it describes. There are three types of ISDs relevant to
processing program images:

* A private section ISD describes code and data that is present in
the body of the image file. A private image section can be either
read-only or read/write depending on the attributes of the program
sections that make up the image section. Image sections containing
fixup information are classed as private image sections.

2-22 The VAXELN System Image

Figure 2—4: General Structure of a VMS ISD

Image Section Descriptor (ISD)

4 Number of Pages Size of ISD
in This Section (in Bytes)

Starting Virtual Page

Number for This Section
Section Flags
End of Demand
-« Zero Section
e Descriptor
Base Virtual Block Number
in Image File for This Section B End of Private
2 Section Descriptor
7/
Identifier for Global Section
Count
Global Section Name
(up to 44 Bytes)
o End of Global

Section Descriptor
MLO-003208

¢ A demand-zero ISD describes a contiguous range of virtual address
space that will be initialized with zeros when the image is mapped
to virtual memory. This demand-zero compression saves disk space
for the image file, since no actual zero-filled image section appears
in the file; only the descriptor for the demand zero section appears.

¢ A global ISD describes a range of virtual address space to which
a shareable image will be mapped into a referencing program’s
address space. It also identifies the name of the shareable image
referenced by the program. More specific information about refer-
ences to the shareable image appears in the program’s fixup vector
image section.

The VAXELN System Image 2-23

Two fields within an ISD identify the nature of the image section. One
is the type field. For program images, the System Builder looks for
only three of the possible values in the type field:

e ISD$K_NORMAL, which indicates that the image section contains
normal data and code

¢ ISD$K_SHRPIC, which indicates that the ISD describes a share-
able image referenced by the program

¢ ISD$K_USRSTACK, which indicates that the ISD specifies the
size and P1 address of the program’s VMS-based user stack as
generated by the VMS Linker

Another field in the ISD, the flags field, contains bits that, when set,
indicate the characteristics of the image section being described; mul-
tiple bits can be set. The following flags are relevant to processing
executable images:

e ISD$V_GBL, which indicates that the ISD describes a shareable
image to be mapped to the program’s address space

e ISD$V_CREF, which indicates that the image section must be copied
into the program’s address space

¢ ISD$V_DZRO, which indicates that the ISD describes a demand
zero image section

e ISD$V_FIXUPVEC, which indicates that the ISD describes a fixup
vector image section

¢ ISD$V_WRT, which indicates that the image section is writeable

Using the information in the ISDs, the System Builder generates kernel
section descriptors (KSDs) to describe each image section to the kernel.
At run time, the information in the KSDs allows the kernel to map
the image into a job’s virtual address space. The creation of KSDs for
executable images is described in Section 2.4.2.

The image header itself is not copied to the system image file. Once
the necessary information has been extracted from the header, it is
no longer of any use to System Builder — the extracted information
now appears in the program descriptor for the image and in the KSDs
associated with that descriptor.

2-24 The VAXELN System Image

2.4.1.3 Kernel Section Descriptors for Program Images

Kernel section descriptors — KSDs — contain information, extracted
from an image’s ISDs, that describes the characteristics and virtual
memory requirements of a VAXELN image section. A program’s KSDs
are created and linked to the program’s descriptor (PRG) by the System
Builder. The creation of KSDs for an executable image is described in
Section 2.4.2.

At job creation, the kernel scans the program’s KSDs and uses their
contents to map the program sections into the job’s virtual address
space. KSDs that describe image sections containing nonshare-
able read/write or read-only data and code are called private KSDs.
Figure 2-5 shows the structure of a private KSD.

Figure 2-5: Structure of a Private KSD

KSD$B_FLAGS KSD$B_TYPE KSD$W_SIZE

KSD$L_PAGCNT

KSD$L_USER_VA

KSD$L_SYSTEM_VA

MLO-003207

(Two other types of KSDs exist: global and shareable. A global KSD de-
scribes a range of virtual addresses within a program’s address space to
which a shareable image with writeable image sections will be mapped.
A shareable KSD describes an image section in a shareable image.
Global and shareable KSDs are discussed further in Section 2.6.1.2,
Kernel Section Descriptors for Shareable Images.)

Table 25 describes the fields in a private KSD.

The VAXELN System Image 2-25

Table 2-5: Private KSD Fields

Field Meaning
KSD$W_SIZE The size of this kernel section descriptor, used to walk list of KSDs
KSD$B_TYPE A value indicating image section type, as follows:
Value Meaning
KSD$K_CODE The associated image section contains
read-only data/instructions.
KSD$K_FIXUP The associated image section contains
address relocation fixup data.
KSD$K_DATA The associated image section contains
read/write data.
KSD$K_DZRO The associated image section should be
created as a demand-zero section.
KSD$K_GBL This KSD represents a shareable image

KSD$K_SHARE_DATA

that contains writeable data that must
be mapped into the program’s address
space.

This KSD represents a shareable
read/write image section; that is, a
global common.

KSD$B_FLAGS A bit field indicating the characteristics of the image section, as
follows:
Bit Meaning
KSD$V_CRF The associated image section should be

KSD$V_RWADDRDATA

copied into the referencing program’s
address space.

The associated shareable image sec-
tion contains read/write address data
(.ADDRESS references).

2-26 The VAXELN System Image

Table 2-5 (Cont.): Private KSD Fields

Field Meaning

KSD$L_PAGCNT The number of pages in the image section

KSD$L_USER_VA The starting virtual address for the image section in the program’s
address space

KSD$L_SYSTEM_VA The starting system virtual address of the image section; that is, its

location within the mapped system image

2.4.2 Processing Program Images

Once the program list is assembled, the System Builder processes

the programs in the list and copies their data and code to the system
image file. In this stage of its operation, the System Builder analyzes a
program image in a manner similar to that of the VMS image activator.
However, the goal of the VMS image activator is to create virtual
memory for a program, map its image sections into that address space,
and transfer control to the program, all at run time. The System
Builder, by contrast, is responsible only for creating the mapping
information at build time; this information is then used by the kernel
at run time to activate the program as a job.

Both the VMS image activator and the System Builder perform their
work on images created by the VMS Linker. See Section 2.4.1.2 for
information on the structure of a VMS image.

In processing an executable image, the System Builder’s function is
fourfold:

¢ Copy the program’s transfer address from the image header to the
PRG$L_TRANSFER field in the program descriptor.

¢ Analyze each ISD in the image header, translate it to an appropri-
ate KSD, and include that KSD as part of the program descriptor.

* Process the shareable images referenced by the program. The
System Builder must see to it that every shareable image refer-
enced by the program is included in the system image.

¢ Copy the program’s image sections (including the fixup image
section) to the VAXELN system image. Only image sections are
copied; that is, the image header is discarded.

The VAXELN System Image 2-27

The ISDs in a program’s image header form the basis for the System
Builder’s image processing. To translate ISDs into KSDs, the System
Builder opens the image file and scans each ISD to determine its type
and characteristics. For executable images, an ISD is translated into a
private KSD, which describes an image section containing code or data.
KSDs for program images are described in Section 2.4.1.3.

The ISDs being processed must be of type ISD$K_USRSTACK, ISD$K_
SHRPIC, or ISD$K_NORMAL. If not, processing of the image stops.
When an ISD has been processed, the image section it describes is
copied from the program image file to the VAXELN system image file.

This same process is applied to every ISD in every program in the
program list. When the program list has been exhausted, all system
and user programs will be in the system image. Following this block of
image sections in the system image is the block of program descriptors
and KSDs. In the course of processing the program images, the System
Builder will also have processed all the shareable images referenced by
the programs in the program list.

The following sections describe how each type of ISD is processed by
the System Builder.

24.2.1 Processing ISDs of Type ISD$K_USRSTACK

ISDs of type ISD$K_USRSTACK are discarded; they describe the user
stack for an image running under VMS. Instead of using this VMS
stack, the VAXELN Kernel creates a user-mode stack in P1 space when
a process is created. No KSD is created, and no image section is copied
to the system image.

2.4.2.2 Processing ISDs of Type ISD$K_SHRPIC

ISDs of type ISD$K_SHRPIC represent a shareable image referenced
by the program. The shareable image’s identification code is copied
from the ISD to the identification field for the referenced shareable
image in the program’s shareable image list. No KSD is created, and
no image section is copied to the system image.

2-28 The VAXELN System Image

2.4.2.3 Processing ISDs of Type ISD$K_NORMAL

ISDs of type ISD$K_NORMAL require the creation of a private KSD
for the described image section. The System Builder allocates a KSD
structure and initializes it with zeros. The system virtual address

of the program’s first KSD is written to the PRG$L_KSD field in the
program descriptor. At run time, the KER$CREATE_JOB procedure
uses this address to access the KSDs for the program. As each private
KSD is created, it is added to the list of the program’s KSDs. This block
of KSDs is contiguous to the program descriptor and is later copied to
the system image file as part of the program list.

The values for the KSD’s KSD$L_PAGCNT and KSD$L_USER_VA
fields are copied from parallel fields in the ISD. The number of pages
specified by KSD$L_PAGCNT will be mapped from the image section
described by the KSD to the program’s virtual address space beginning
at the PO address found in KSD$L_USER_VA.

The values of the KSDB_TYPE, KSDB_FLAGS, KSD$L_SYSTEM_
VA fields depend on the bit settings in the ISD’s flags field. The follow-
ing sections describe how the remaining fields of a KSD are completed,
depending on the flag settings in the ISD.

2.4.2.3.1 ISDs with No Applicable Flags Set — Code Sections

If none of the applicable ISD flag bits is set, then a read-only image sec-
tion has been encountered. Therefore, the KSD type is set to KSD$K_
CODE, and KSD$L_SYSTEM_VA is set to the system virtual address
at which the image section will appear in the system image. If this im-
age section is adjacent to another private read-only image section, the
System Builder combines them and adds the value of KSD$L_PAGCNT
in the merged KSD to the same field in the previous KSD.

When the KER$CREATE_JOB procedure encounters a code KSD,

it simply maps the image section into the program’s address space,
starting at KSD$L_USER_VA, by copying the system page table entries
for the image section into the job’s PO page table (a process called
double mapping). No new physical memory is allocated, and multiple
jobs can execute a single copy of the program code.

The VAXELN System Image 2-29

2.4.2.3.2 ISDs with the ISD$V_DZRO Flag Set — Demand-Zero Sections

If bit ISD$V_DZRO in the ISD flags field is set, then a demand-

zero image section has been encountered. Therefore, the KSD flag
KSD$V_CRF is set, the KSD type is set to KSD$K_DZRO, and KSD$L_
SYSTEM_VA is set to 0. When the KER$CREATE_JOB procedure
encounters a demand-zero KSD, it allocates the required KSD$L_
PAGCNT number of pages from physical memory, maps them into the
program’s address space starting at KSD$L_USER_VA, and zeros the

pages.

2.4.2,.3.3 ISDs with the ISD$V_WRT and ISD$V_CRF Flags Set — Data Sections

If bits ISD$V_WRT and ISD$V_CRF in the ISD flags field are set,
then a read/write image section (that is, data) has been encountered.
Therefore, the KSD flag KSD$V_CRF is set, the KSD type is set to
KSD$K_DATA, and KSD$L_SYSTEM_VA is set to the system virtual
address at which the image section will appear in the system image. If
this image section is adjacent to another private data image section, the
System Builder combines them and adds the value of KSD$L_PAGCNT
in the merged KSD to the same field in the previous KSD.

When the KER$CREATE_JOB procedure encounters a data KSD, it
allocates the required number of pages from physical memory, maps
them in the program’s address space starting at KSD$L_USER_VA,
and copies the data pages from system virtual address space into
the program’s address space. This way, multiple jobs executing the
same program image will each have a private copy of the program’s
read/write data.

2.4.2.3.4 ISDs with the ISD$V_FIXUPVEC Flag Set — Fixup Vector Sections

If bit ISD$V_FIXUPVEC in the flags field is set, then an image sec-
tion containing fixup data has been encountered. Therefore, the KSD
type is set to KSD$K_FIXUP, and KSD$L_SYSTEM_VA is set to the
system virtual address at which the fixup data will appear in the
system image. This address will be used during later processing to
resolve the program’s references to shareable images, as described in
Section 2.6.2.2.

When a fixup vector ISD is encountered, the System Builder interrupts
processing of the program image and processes the shareable images
referenced by the program, as described in Section 2.6.2.1. If the
program references a shareable image that contains a writeable image

2-30 The VAXELN System Image

section, then a global KSD describing the required address range of the
shareable image is created and inserted into the referencing program’s
list of KSDs. When the KER$CREATE_JOB procedure encounters a
global KSD, it locates the shareable image’s KSDs and uses them to
map the shareable image’s sections into the program’s address space.

2.5 Device List

A VAXELN system can support a variety of devices, from the console
terminal connected to the host processor to, for example, a customized
real-time device connected to an IEEE instrument bus controller. Each
device or device controller to be used by a VAXELN system must

be represented to the kernel by a device descriptor called a system
configuration record (SCR). The System Builder creates SCRs from
information entered on the Device Description Menu, inserts them
into a list, and writes the list to the system image file. At run time —
in response to a call to the KER$CREATE_DEVICE procedure — the
kernel uses the SCRs to create device objects and associate them with
interrupt service routines in device driver jobs.

The System Builder creates SCRs for user-supplied device descrip-
tions by allocating a block of memory and transposing the fields on
a System Builder device description into the fields of an SCR, shown
in Table 2—6. SCRs for the network controller and console device are
added implicitly by the System Builder if required.

Table 2-6: System Configuration Record Fields

Field Meaning

SCR$L_NEXT The offset to the next SCR

SCR$W_SIZE The size in bytes of the device name

SCR$T_NAME The device name text string

SCR$L_DEVICE The device register address

SCR$W_VECTOR The interrupt vector address

SCR$B_IPL The device hardware interrupt priority
level

SCR$B_BI_NUMBER The BI bus number

SCR$B_ADAPTER_NUMBER The adapter/BI node number

The VAXELN System Image 2-31

The System Builder places the length of the device name entered on a
device description into the SCR$W_SIZE field and the text of the name
in SCR$T_NAME. The hardware interrupt priority level (IPL) of the
device is calculated by adding 16 to the bus priority value entered in
the interrupt priority field of the Device Description Menu; the result
is written to the SCR$B_IPL field. For example, the System Builder
default interrupt priority value is 5, which yields a VAX hardware IPL
of 21 (5 + 16).

As each SCR is created, it is inserted into the device list. At run time,
the kernel locates the completed device list by using the value of the
parameter KER$GA_DEVICE_LIST. This value, calculated by the
System Builder, is the byte offset from KER$GA_DEVICE_LIST itself
to the first SCR in the list. As SCRs are created, the SCR$L_NEXT
field is filled with the size of an SCR structure (defined by the global
constant SCR$K_LENGTH), rather than with the absolute address of
the next SCR in the device list. The value of SCR$L_NEXT, then, is
the byte offset to the next SCR in the list.

These offsets, rather than absolute virtual addresses, are used for

the values of KER$GA_DEVICE_LIST and SCR$L_NEXT, because

the kernel must traverse the list both with memory management
disabled (using physical addresses) and subsequently with memory
management enabled (using virtual addresses). Since the SCRs in the
list are contiguous in the system image, the physical or virtual address
of the next SCR in the list is calculated by adding SCR$L_NEXT to the
base address of the current SCR.

Once the list of SCRs has been created, the System Builder scans
the list and attempts to associate a device driver program with each
device, a process called autoloading. (Autoloading can be disabled on
the Device Description Menu, in which case the user must associate
the driver program and device description manually.) To autoload the
device, the System Builder takes the first two characters of the device
name (for example, “MU”), appends the string “DRIVER” to them

(in this case, creating the name “MUDRIVER”), and adds a program
descriptor for the driver program to the program list.

Before adding the driver’s program descriptor to the program list, the
System Builder writes the device name into a job parameter block
(JPB) and inserts the block into the driver program’s list of parameter
blocks. For example, the MUDRIVER program is passed the device
name MUA as its program argument. Often, when the driver initializes
at system start-up, it obtains this argument and uses it in a call to the
CREATE_DEVICE kernel procedure to establish a device object for the
device.

2-32 The VAXELN System Image

Autoloading for terminal controllers works differently because, tradi-
tionally, the name of a terminal does not match the name of the driver
— a TTA device is not usually controlled by TTDRIVER.EXE. In the
case of terminals, the System Builder attempts to associate a device
descriptor for a terminal controller (for example, TTA), a collection

of terminal descriptions (from the Terminal Description Menu — for
example, TTAO, TTAl), and a terminal driver program (for example,
DMBDRIVER.EXE).

Specifically, the System Builder takes the first three characters of the
name of a terminal line (for example, TTA1) and searches the device
list for a match with a device name (for example, TTA). If a match is
found, the name of the driver for the terminal controller is derived from
the terminal type field in the terminal description (for example, DMB,
yielding a driver name of DMBDRIVER.EXE). If a program by that
name is not already in the program list, a program descriptor is added,
and the terminal controller name is passed to the program in a JPB.

Once all terminal controller device descriptions have been associated
with appropriate driver programs, the System Builder scans both

the program list and the terminal descriptions searching for matches
between a terminal driver’s job parameter (for example, TTA) and

the first three characters of a terminal’s name. If a match is found,
then the terminal characteristics, in the form of binary packets, are
added as JPBs for the terminal driver program. For example, if
DMBDRIVER.EXE has a program argument of TTA, its subsequent
program arguments will contain the binary characteristics data for ter-
minal lines TTAQ, TTAl, and so on. During its run-time initialization,
the driver job will obtain these arguments to establish the line char-
acteristics for each line associated with its controller. In this way, the
terminal characteristics entered on the Terminal Characteristics Menu
find their way to the device driver for the associated controller.

2.6 Shareable Images

Under the VMS operating system, a program’s references to share-
able images are resolved at image activation time, specifically, at the
point when the image activator installs the program image into pro-
cess address space. If the shareable image is installed as shareable
(/SHARED) on the system, the program executes the shared copy of
the image in system virtual address space. If the shareable image is
not installed as shareable, then the image must be mapped into the
user’s address space. In either case, the image activator must perform
address relocation on the shareable images.

The VAXELN System Image 2-33

Address relocation must wait until activation time, because the VMS
Linker does not know where in virtual memory a shareable image
will be installed. This feature allows a shareable image to be modified
without requiring programs that reference it to relink against the new
version. Still, deferring this process beyond link time adds to the time
required to activate an image.

Under VAXELN, all shareable images are, in effect, installed in system
address space by the System Builder. When the kernel creates a job,
no extra steps are required to activate the shareable images that the
program references. All virtual address mapping information for the
program has been distilled into its KSDs, and address relocation for the
shareable images it references has taken place at system build time.

Address relocation can occur at build time instead of at run time,
because the System Builder knows where the shareable image will be
based in virtual memory. Therefore, at run time, the kernel simply
reads the job’s KSDs and maps the corresponding image sections to
the job’s virtual address space. Thus the use of shareable images has
virtually no impact on the time required to create a job (activate a
program image) under VAXELN.

The System Builder incorporates shareable images into the system
image under these circumstances:

* A program image refers to a shareable image. When such a ref-
erence occurs, the shareable image will be identified in the fixup
vector section of the referencing image. When fixup vectors ap-
pear in an image, the System Builder scans the data in the fixup
vector and includes each shareable image cited. If the referenced
shareable image in turn references a shareable image, the second
shareable image is included as well. For example, the VAXELN
shareable image run-time libraries, such as PASCALMSC.EXE and
CMSC.EXE, are included in the system when they are referenced
by programs in the program list.

¢ The name of a shareable image appears in the Guaranteed image
list entry on the System Characteristics Menu. The names of
shareable images that may be referenced by dynamically loaded
programs must appear on this list if these shareable images may
not be included by appearing in an executable image’s fixup vector.

* VAX instruction emulation is requested on the System Characteristics
Menu. Instruction emulation is provided through shareable images,
which the System Builder incorporates into the system image.

2-34 The VAXELN System Image

The System Builder also includes a shareable image containing basic
console I/0 routines that the kernel uses to log messages, such as

the system initialization message, to the system console. The use of the
console I/0 shareable image enables the kernel to write messages to the
console without the console driver being present. The console shareable
image is processor- and display-hardware specific; the System Builder
includes the appropriate version based on the processor and display
type selected by the user.

The following sections describe the data structures and operations the
System Builder uses in processing shareable images.

2.6.1 Data Structures for Shareable Image Processing

The System Builder analyzes and creates a number of data structures
in the course of incorporating a shareable image into a VAXELN system
image. Those structures fall into the following classes:

¢ The shareable image descriptors and the shareable image table.
Analogous to program descriptors for executable images, shareable
image descriptors are kernel data structures that record informa-
tion about shareable images included in the VAXELN system. All
image descriptors are linked into a list called the shareable image
table. The System Builder uses this table to copy the shareable
images to the system image file. At run time, the table is used only
during dynamic program loading.

* Structures within the VMS shareable image and the image that
references it. As with an executable image, the shareable image’s
header and ISDs must be processed and appropriate KSDs must be
created for the shareable image. In addition, the System Builder
must access and possibly modify the fixup vector section within the
image that references a shareable image.

¢ Shareable and global KSDs. Analogous to the private KSDs as-
sociated with a program descriptor, shareable KSDs describe the
makeup and virtual memory requirements of a shareable image’s
image sections. The kernel may use these KSDs at run time to map
a shareable image into a referencing job’s address space.

Global KSDs describe the virtual address requirements of a share-
able image that must be mapped into a referencing job’s virtual
address space. Although a global KSD is created during shareable
image processing, it takes its place in the referencing program’s list
of KSDs. At job creation, the kernel uses the global KSD to locate

The VAXELN System Image 2-35

the shareable image’s shareable KSDs and map them into the ref-
erencing job’s address space. Global KSDs are required only when
the referenced shareable image contains writeable image sections.

The following sections describe these structures in more detail.

2.6.1.1 Shareable Image Descriptors and the Shareable Image Table

The information stored in a shareable image descriptor is used at run
time by the ELN$LOAD_PROGRAM utility to resolve a dynamically
loaded program’s references to shareable images. When the System
Builder inserts the shareable image descriptors into the shareable im-
age table, it copies the list to the location in the system image following
the device list. The system virtual address of the first descriptor in the
table is stored at the global location KER$GA_SHAREABLE_IMAGE_
LIST in the kernel data block.

A shareable image descriptor contains the fields shown in Table 2-7.

Table 2-7: Shareable Image Descriptor Fields

Field Meaning

SHT$L_NEXT The address of next table entry

SHT$L_IDENT Shareable image identification data

SHT$L_KSD ';[‘he address of the first KSD in the list of KSDs for this
image

SHT$L_FIXUP The address of the fixup vector section for this image

SHT$B_MATCHCTL The image identification matching information

2-36 The VAXELN System Image

Table 2-7 (Cont.): Shareable Image Descriptor Fields

Field

Meaning

SHT$B_FLAGS

SHT$T_NAME

A Dbit field indicating characteristics of this image, as follows:

Bit Meaning
SHT$V_LOCAL_COPY The image contains a write-

able image section and must
be mapped to a referencing
program’s address space.

SHT$V_RWADDRDATA The image contains read/write
address data (ADDRESS refer-
ences to itself or other shareable
images); its KSDs must be
copied to the referencing pro-
gram’s KSD list, and extra
copies must be made of its image
sections that contain .ADDRESS
references.

The string descriptor containing the size of the image name
and the text of the name

The System Builder uses the shareable image table to locate and ma-
nipulate the shareable images it has read into internal memory. By the
time the table is written to the system image, it includes descriptors
for all the shareable images referenced by programs, those specified

on the guaranteed image list, those requested by the selection of VAX
instruction emulation, and the console 1/0 image.

At run time, however, the kernel has no need to use the shareable
image table, because the execution of shareable images is completely
transparent under normal circumstances. The shareable image table
is used only for dynamically loaded programs. In these cases, the
ELN$LOAD_PROGRAM utility needs the table to perform address
relocation for the loaded program’s references to shareable images.
Since the dynamically loaded program is not known to the System
Builder, build time address relocation cannot resolve the program’s
references to shareable images; instead, the relocation must occur at
run time, before KER$CREATE_JOB activates the program.

The VAXELN System Image 2-37

2.6.1.2 Kernel Section Descriptors for Shareable Images

As described in Section 2.4.1.3, KSDs describe the characteristics and
virtual memory requirements of a VAXELN image section. When pro-
cessing a shareable image, the System Builder translates the image’s
ISDs into shareable KSDs. These KSDs are then linked to the share-
able image’s descriptor, becoming part of the shareable image table
entry for that shareable image.

Two types of KSDs are associated with shareable images: shareable
and global. A shareable KSD is the shareable-image equivalent of

a private KSD for executable images; that is, the System Builder
translates the ISDs in the shareable image to KSDs as it does for the
ISDs of an executable image, except that the resulting structure is
known as a shareable KSD, shown in Figure 2-6.

Figure 2-6: Structure of a Shareable KSD

KSD$B_FLAGS KSD$B_TYPE KSD$W_SIZE

KSD$L_PAGCNT

KSD$L_SHT

KSD$L_SYSTEM_VA

MLO-003208

The shareable KSD records the address of the shareable image descrip-
tor to which it belongs in the KSD$L_SHT field. Table 2-8 describes
the fields that appear in both shareable and global KSDs. See the
KSD$B_TPYE and KSD$B_FLAGS entries in Table 2-5 for the bits
and constant values, respectively, that can be recorded in the KSD$B_
TYPE and KSD$B_FLAGS fields of both shareable and global KSDs.

2-38 The VAXELN System Image

Table 2-8: Shareable and Global KSD Fields

Field KSD Type Meaning

KSD$W_SIZE Both The size of this kernel section
descriptor, used to walk list of
KSDs

KSD$B_TYPE Both The storage for a constant value
indicating the image section type

KSD$B_FLAGS Both A bit field indicating the character-
istics of the image section

KSD$L_PAGCNT Both The number of pages in the image
section

KSD$L_USER_VA Global The starting virtual address for

the image section in the program’s
address space

KSD$L_SYSTEM_VA Shareable The starting system virtual address
of the image section; that is, its
location within the mapped system
image

KSD$L_SHT Shareable The address of the shareable image

table entry describing the shareable
image to which this KSD belongs

KSD$L_GBL_KSD Global The system virtual address of the
first KSD in the list of KSDs for
the shareable image the global
KSD represents

When a shareable image contains a writeable image section, its share-
able KSDs must be mapped into the address space of the referencing
job. The System Builder creates a global KSD describing the location
of the shareable KSDs and the number of virtual pages they require;
this global KSD is then inserted into the referencing job’s list of KSDs.
Figure 2-7 shows the structure of a global KSD.

When the KER$CREATE_JOB procedure encounters the global KSD
while mapping the referencing program into virtual memory, it uses the
data in the global KSD to locate and map the shareable image’s KSDs
into the program’s address space. In particular, the kernel uses the
address in KSD$L_GBL_KSD to locate the first KSD in the shareable

The VAXELN System Image 2-39

Figure 2—7: Structure of a Global KSD

KSD$B_FLAGS KSD$B_TYPE KSD$W_SIZE

KSD$L_PAGCNT

KSD$L_USER_VA

KSD$L_GBL_KSD

MLO-003209

Figure 2-8: A Global KSD Refers to Shareable KSDs

Program 1’s List of KSDs List of KSDs for Shareable Image

o

Shareable Image
Sections Mapped
from Shareable
KSDs

Private KSDs

Global KSD for
Shareable Image

Program 2’s List of KSDs

Private KSDs

Shareable Image

Global KSD for Sections

Shareable Image

MLO-003210

image’s list of KSDs and then maps them into the referencing program’s
address space starting at the address in KSD$L_USER_VA. Figure 2-8
shows how the global KSD refers to the KSDs in the shareable image
table.

240 The VAXELN System Image

2.6.1.3 VMS Image Structures Used in Shareable Image Processing

A shareable image has the same general structure and components
that an executable image has: a header, a body, and, possibly, a fixup
vector section.

While processing a shareable image, the System Builder scans the ISDs
in the image header. For shareable images, the System Builder looks
for only three of the possible values in the ISD type field:

e ISD$K_SHRPIC, which indicates that the image section is share-
able and position-independent

e ISD$K_PRVPIC, which indicates that the image section is non-
shareable and position-independent

e ISD$K_PRVFXD, which indicates that the image section is non-
shareable and position-dependent (usually a fixup vector image
section)

The flags field in the ISD is also examined to determine whether an
image section is global, copy-on-reference, fixup, or writeable. The
setting of the bits in the flags field determines whether a shareable
image is purely shareable or whether it must be mapped into the
address space of the image that references it.

Of central importance to the processing of shareable images is the
fixup vector image section supplied by the image that references the
shareable image. The System Builder finds which shareable images a
program image references by analyzing the program’s fixup section. A
fixup vector image section is indicated by the ISD$V_FIXUPVEC bit set
in an ISD’s flags field. When the System Builder encounters such an
ISD during image processing, it begins to process the shareable images
cited in the fixup section.

The fixup vector image section, shown in Figure 2-9, contains three
blocks of information that the System Builder uses to incorporate
shareable images into the system image:

¢ A shareable image list (SHL). This list contains an entry describing
each shareable image referenced. An SHL entry contains a num-
ber of fields that are read and updated during processing of the
shareable image. After image processing, these fields contain the
following information about a shareable image:

— The SHL$L_BASEVA field specifies the base virtual address
at which the shareable image is mapped into the referencing

The VAXELN System Image 2-41

program’s address space. This address is used for address
relocation.

— The SHL$L_SHLPTR field points to the shareable image de-
scriptor for the shareable image that the SHL entry describes.
Shareable image descriptors are discussed in Section 2.6.1.1.

— The SHL$L_IDENT field contains data used to detect any
mismatch between the shareable image the program linked
against and the actual shareable image appearing in the system
image.

— The SHL$T _IMGNAM field contains a string descriptor specify-
ing the name of the shareable image.

This list should not be confused with the shareable image table
created by the System Builder.

* A table of address relocation information for general-mode (G*)
references to shareable images. This information is used by the
System Builder to perform address relocation for the program’s

references to global locations within the shareable images in its
SHL.

* A table of address relocation information for . ADDRESS refer-
ences to shareable images. This information is used by the System
Builder to perform address relocation for the program’s use of

addresses of global locations within the shareable images in its
SHL.

Given the information in a program’s fixup section, the System Builder
can completely integrate the VAXELN or user-written shareable images
that a program references.

2.6.2 Processing Shareable Images

The processing of shareable images occurs in two distinct phases. The
first phase involves creating shareable image descriptors and KSDs,
and copying the image sections to the system image file. The second
phase involves performing address relocation to resolve references
within the system’s program images to locations within the system’s
shareable images. The following sections describe these two phases of
shareable image processing.

2-42 The VAXELN System Image

Figure 2-9:

Structure of an Image Fixup Vector
GA Fixup Data
~
/] Reterence Count
/
/ Index to SHL
/ G* Fixup Data
7 Oftset > for 1st Shareable
/ Image
/ Oftfset
/
/ 4
/ <
/ Reference Count
/
! Index to SHL
Fixup Vector / G* Fixup Data
Offset > tor Nth Shareable
/ ar Image
; Fixup Ofttset
MAIN.EXE / Data
/
Image T~ I — ____1 J
Header Page_ =
, Protection
\ ° Data -
an:dgy / - Shareable Image _ 7 |Baese Virtual Address
/ List Entry for -,
- Shareable Main (Index 0) 4
Fixup Image g
Vector List
(SHL) (Index 1)
\
N N N Shareable I_
N .ADDRESS N ~ Image
N Fixup NN N Name
N Data NS (Index N)
\
\ \ .ADDRESS Fixup Data
\ N
\ Number of Offsets
‘\ Index to SHL
\ .ADDRESS Fixup
Oftset > Data for
! MAIN .EXE
\ Offset
\
\
\ <
\ Number of Otfsets
\
\ Index to SHL
\ .ADDRESS Fixup
\ Offset > Data for Nth
\ Shareable Image
\ Offset
\
(—1 7 MLO-003211

The VAXELN System Image 2-43

2.6.2.1 Creating Shareable Image Descriptors and KSDs

As it does for executable images, the System Builder processes share-
able images by creating a descriptor for each image, opening the image
file, analyzing its image header and ISDs, and creating KSDs to de-
scribe its image sections. The descriptors and KSDs (the shareable
image table) and image sections for the shareable image are then writ-
ten to the system image file. The address of the first shareable image
descriptor is recorded in the location KER$GA_SHARE_LIST in the
kernel’s parameter block; this value is copied to the location KER$GA_
SHAREABLE_IMAGE_LIST in the kernel data block during system
initialization. The shareable images themselves follow the table and
comprise the last element in the system image.

The inclusion of implicitly requested shareable images — that is, those
shareable images to which another image refers — begins when the
System Builder encounters a fixup vector ISD during its translation of
an image’s ISDs to KSDs (the fixup vector image section may reside in
either an executable image or a shareable image). The System Builder
then scans the fixup section and includes the shareable images that are
listed in the fixup vector’s SHL, described in Section 2.6.1.3. (Explicitly
requested shareable images — those on the guaranteed image list —
are included during a separate phase of processing, but their treatment
is otherwise identical. Only those images on the list that are not
already in the shareable image table are included.)

The System Builder takes the following steps to process a shareable
image:

1. Records the address of the current fixup section in an internal list.
This list will be used later to perform address relocation.

2. Extracts the name of the shareable image from the SHL$T_
IMGNAM field and determines whether this shareable image has
already been processed. If so, processing of the shareable image
ceases.

3. If the shareable image has not already been processed, creates
a shareable image descriptor for it and adds it to the share-
able image table. The contents of the descriptor are described
in Section 2.6.1.1.

4. Opens the shareable image file, scans the ISDs in the image header,
translates them to KSDs, adds the KSDs to the image descriptor,
and copies the shareable image into memory. If the shareable
image references any other shareable images, the System Builder

2-44 The VAXELN System Image

repeats this process for those images, using the current image’s
SHL to locate the additional shareable images.

5. Repeats the entire process for each shareable image in the image’s
shareable image list.

6. Copies the completed shareable image table, including all share-
able KSDs, and the shareable image sections themselves from the
System Builder’s dynamic memory to the system image file.

If all shareable images contained only read-only code and data, their
processing would be as straightforward as it is for executable images.
In that simplest of cases, all programs referencing a given shareable
image use the single copy of the image that the System Builder loads
into the system image file. At run time, a reference to a location within
a “pure” shareable image will point to a system virtual address, a loca-
tion commeon to all jobs in the system. That location can be referenced
by multiple readers since none will be modifying the shareable image.

The processing of shareable images, however, is potentially quite com-
plex. Complications arise when a shareable image contains a writeable
image section. Since any program referencing the writeable image
section in the shareable image can alter its contents, data integrity
must be assured by providing that each referencing program owns a
private copy of the writeable image section. To accomplish this, the
System Builder creates a global KSD describing the image sections in
the writeable shareable image and inserts the KSD into the referencing
program’s own list of KSDs.

The ISDs being processed must be of type ISDK_SHRPIC, ISDK _
PRVPIC, or ISD$K_PRVFXD. If not, processing stops for the shareable
image. An ISD of type ISD$K_SHRFXD generates a warning message,
since it cannot be used for address relocation.

For ISDs of the correct type, the System Builder allocates a KSD
structure and initializes it with zeros. The value for the KSD’s KSD$L_
PAGCNT is copied from a comparable field in the ISD. The KSD$L_
SHT field is set to the address of the KSD’s associated descriptor,

and the system virtual address of the image section is written to the
KSD$L_SYSTEM_VA field.

The values of the KSD$B_TYPE and KSD$B_FLAGS fields depend
on the bit settings in the ISD’s flags field. Moreover, much additional
processing is required when an ISD has certain flag settings. The
following sections describe how the flag settings in a shareable image’s
ISD influence the creation of KSDs for the shareable image. Table 2-9

The VAXELN System Image 2-45

Table 2-9: Characteristics of Shareable KSDs

summarizes the characteristics of the KSDs that can be created for

shareable images.

ISD Flag

Section

KSD Flag

KSD Type

Run-Time
Characteristics

None

ISD$V_WRT
ISD$V_CRF

ISD$V_WRT

ISD$V_
FIXUPVEC

Read-only

Nonshareable
read/write data

Shareable
read/write data

Fixup vector

None

KSD$V_CRF

None

None

KSD$K_
CODE

KSD$K_DATA

KSD$K_
SHARE_DATA

KSD$K_
FIXUP

Shareable in system
space; referenced
through SO page table

Physical memory al-
located; image section
copied and mapped;
referenced through PO
page table

Mapped into program
space; referenced
through PO page table

Pure shareable image:
ghareable and refer-
enced through SO page
table; otherwise, pri-
vate copy of the fixup
section is mapped into
program space to vector
G/ references to share-
able image mapped into
program space

2.6.2.1.1

2-46 The VAXELN System Image

No Applicable Flags Set — Shareable Code Sections

If none of the applicable ISD flags is set, then a read-only shareable
image section has been encountered. Therefore, the KSD type is set to
KSD$K_CODE, and KSD$L_SYSTEM_VA is set to the system virtual
address at which the image section will appear in the system image.
If this image section follows another private read-only section, the
System Builder combines the two sections by adding the current KSD’s
KSD$L_PAGCNT value to that in the previous KSD. The two image
sections are now effectively merged.

A read-only shareable image section is potentially shareable by all pro-
grams in a VAXELN system. If the section resides in a pure shareable
image (SHT$V_LOCAL_COPY is clear), then no double mapping of the
section into the program’s address space is necessary, and all programs
will reference a single copy of the image section. The process of address
relocation ensures that a program’s reference to the shareable image is
vectored to the correct location in system space through the system (S0)
page table.

If the shareable image contains any writeable image sections (excluding
fixup sections), then the image’s read-only shareable sections must be
double mapped into the referencing program’s address space, where
they will be referenced through the program’s PO page table. However,
no physical memory is allocated for the shareable section. Because the
shareable image contains a writeable section, its shareable sections are
referenced through the job’s PO page table instead of through the S0
page table.

2.6.2.1.2 ISD$V_WRT and ISD$V_CRF Flags Set — Data Sections

If bits ISD$V_WRT and ISD$V_CRF are set, then a nonshare-

able read/write image section (that is, data) has been encountered.
Therefore, the KSD flag KSD$V_CRF is set, the KSD type is set to
KSD$K_DATA, and KSD$L_SYSTEM_VA is set to the system vir-
tual address at which the image section will appear in the system
image. If this image section follows another data image section, the
System Builder combines the two sections by adding the current KSD’s
KSD$L_PAGCNT value to that in the previous KSD. The two image
sections are now effectively merged.

When a nonshareable, writeable image section is encountered, the
SHT$V_LOCAL_COPY bit is set in the shareable image descriptor. At
run time, physical memory is allocated for the writeable image section,
the content of the section is copied to the allocated memory, and the
memory is mapped into the referencing program’s address space.

2.6.2.1.3 ISD$V_WRT Flag Set and ISD$V_CRF Clear — Shareable Data Sections

If the ISD$V_WRT bit is set without the ISD$V_CRF being set, then
a shareable read/write image section has been encountered. Therefore,
the type is set to KSD$K_SHARE_DATA, and KSD$L_SYSTEM_VA
is set to the system virtual address at which the image section will
appear in the system image. If this image section follows another
shareable, read/write section, the System Builder combines the two

The VAXELN System Image 247

sections by adding the current KSD’s KSD$L_PAGCNT value to that in
the previous KSD. The two image sections are now effectively merged.

An image section with the KSD$K_SHARE_DATA attribute represents
a global common section that can be read and updated by multiple jobs.
At run time, the section is simply mapped from its system address
into the referencing program’s address space. (However, if the pages
containing the shareable section are located in ROM on a MicroVAX I,
the kernel allocates physical memory and copies the section there at
run time; the physical memory is still shared by all referencers.)

Because the section is writeable, the shareable image that contains it
is marked with the SHT$V_LOCAL_COPY flag and is represented in
the referencing program’s list of KSDs by a global KSD. At run time,
KER$CREATE_JOB will begin double mapping the shareable image’s
KSDs into the program’s address space. Because the KSD$V_CRF bit
is not set in the shareable read/write section’s KSD, the kernel will
not create a private copy of the section; only the system page table
entries that map the section will be copied into the job’s PO page table.
Therefore, each program that references that section will reference
and modify the single copy of the section in physical memory. (Even
though the writeable section is shareable, it must be mapped into the
program’s address space, because user-mode programs are unable to
write to memory mapped in the system page table.)

2.6.2.1.4 ISD$V_FIXUPVEC Flag Set — Fixup Vector Sections

If bit ISD$V_FIXUPVEC is set, then an image section containing fixup
data has been encountered. Therefore, the type is set to KSD$K_
FIXUP.

The presence of a fixup vector ISD means that the current shareable
image references yet another shareable image; as a result, the System
Builder processes the shareable images in this fixup vector’s SHL. If
any of the shareable images referenced by this shareable image contain
a writeable image section, then the current shareable image’s SHT$V_
LOCAL_COPY bit is set, even if it does not itself contain writeable
sections.

The processing required by the presence of a fixup vector in a shareable
image depends on whether the image contains writeable sections.

2-48 The VAXELN System Image

2.6.2.1.4.1 Shareable Images Without Writeable Sections

For shareable images that contain no writeable sections or reference
no other writeable shareable images, no further processing of the fixup
vector — beyond address relocation — is required. Through address
relocation, all references to the shareable image point to the single copy
of the image in system address space. Address relocation is discussed
in more detail in Section 2.6.2.2.

2.6.2.1.4.2 Shareable Images with Writeable Sections

The processing that results from the presence of a fixup section in

a writeable shareable image (SHT$V_LOCAL_COPY is set) is more
involved than it is for pure shareable images. The following steps are
taken:

1. The KSD that describes the shareable image’s fixup vector section
is copied and inserted into the referencing program’s list of KSDs
as a private KSD.

2. The KSD$L_SYSTEM_VA field in the fixup KSD is set to the
system address at which a private copy of the fixup section will
appear in the shareable image in the system image file.

3. The base address of the fixup section within the program’s address
space is recorded in the KSD$L_USER_VA field.

A private copy of the fixup section for each referencing program is
required for correct address relocation. Address relocation for the ref-
erencing program must be calculated using the base virtual address at
which the shareable image will be mapped in the referencing program’s
address space. This base address can be different for every program
that references the writeable shareable image. As it processes share-
able images, the System Builder calculates how many programs in the
program list reference a given shareable image. That number of copies
of the shareable image’s fixup section is appended to the body of the
shareable image when it is copied to the system image file.

When KER$CREATE_JOB encounters a program’s shareable image
fixup KSD, it maps the fixup image section into the program’s address
space from the system virtual address of the program’s unique copy of
the fixup appended to the shareable image. Address relocation, too, is
performed on this private copy of the shareable image’s fixup vector.
Figure 2-10 shows how programs are associated with their private
copies of a writeable shareable image’s fixup vector.

The VAXELN System Image 2-49

Figure 2-10: Multiple Fixup Vectors in Writeable Shareable Images

Program 1's List of KSDs List of KSDs for Shareable Image

Private KSDs

Global KSD for
Shareable Image

KSD$L GBL KSD)

Private KSD for
Shareable Image’s
Fixup Vector

| KSD$L SYSTEM VA

Program 2's List of KSDs

Private KSDs

Global KSD for
Shareable Image Shareable Image

Sections

‘KSD$L GBLIKSD|

Private KSD for
Shareable Image’s
Fixup Vector

| KSD$L SYSTEM VA

Copies of Fixup
Sections Mapped from
System Addresses of
Appended Sections

MLO-003212

If the writeable shareable image contains no read/write address data
(.ADDRESS references), then only two additional KSDs are inserted
into the referencing program’s list of KSDs: the global KSD repre-
senting the shareable image and the private KSD describing the fixup
vector section.

If the SHL entry in the fixup vector indicates that the writeable share-
able image contains .ADDRESS references, including such references to
itself, then all the shareable image’s KSDs are copied into the referenc-
ing program’s KSD list as private KSDs; no global KSD is used. The
System Builder also sets the SHT$V_RWADDRDATA bit in the share-
able image descriptor and sets the KSD$V_RWADDRDATA bit in each
duplicate KSD that actually contains a .ADDRESS reference. (Sections
that contain .ADDRESS references are writeable since they must be
updated during address relocation; therefore, a shareable image that

2-50 The VAXELN System Image

contains read/write address data always has SHT$V_LOCAL_COPY set
as well.)

This duplication of shareable KSDs as private KSDs is really an ex-
tension of the System Builder’s method for handling fixup sections

in writeable shareable images. To fix up the .ADDRESS references,
the offset stored in the .ADDRESS cell by the VMS Linker must

be replaced by the sum of the offset and the base address at which
the shareable image will appear in the referencing program’s address
space. Since that base address can differ for every referencing program,
a private copy of the image sections containing .ADDRESS references
must be made for every program that references those sections.

Like fixup vectors, the private copies of the ADDRESS sections are
appended to the end of the shareable image as it is capied to the
system image file. The unique system virtual address for each copy is
recorded in the KSD$L_SYSTEM_VA field of its associated duplicate
KSD. When the System Builder performs address relocation for a
referencing program, the . ADDRESS fixups are made to the program’s
private copies of the sections in the shareable image that contain the
actual .ADDRESS cells, using the base virtual address of the shareable
image within the program’s address space.

Figure 2-11 shows how programs are associated with their private
copies of a writeable shareable image’s . ADDRESS sections.

At run time, KER$CREATE_JOB treats these duplicate KSDs as it
does other private KSDs — they are mapped into the program’s address
space from the system address in the KSD$L_SYSTEM_VA field to

the address in the KSD$L_USER_VA field. Processing a KSD whose
KSD$V_RWADDRDATA bit is set differs only in that it is mapped from
the system address at which the referencing program’s private copy

of the .ADDRESS section is appended to the shareable image. Other
programs mapping the same shareable image from their own duplicate
KSDs will reference unique copies of the sections containing ADDRESS
references.

For dynamically loaded programs, these private copies of fixup and
.ADDRESS sections are created in the job’s dynamic memory, since
they cannot be appended to the body of the shareable image at run
time.

The VAXELN System Image 2-51

Figure 2-11: Multiple .ADDRESS Sections in Writeable Shareable
Images

Program 1's List of KSDs

Private KSDs List of KSDs for Shareable Image

Private KSD for
Shareable Image's
.ADDRESS Section

Private KSD for Shareable
Shareable Image’s Image
Sections

Fixup Vector

Program 2’'s List of KSDs

Private KSDs Mapped from
System Addresses of

Appended Sections

Private KSD for
Shareable Image’s
.ADDRESS Section

| KsD$

Private KSD for
Shareable image’'s
Fixup Vector

MLO-003213

2.6.2.2 Address Relocation Fixup

When the shareable image table is complete and the shareable KSDs
and images have been copied to the system image file, the System
Builder performs address relocation. Under VMS, the image activator
performs this task at image-activation time; similarly, under VAXELN,
the program loader utility performs address relocation when a pro-
gram is loaded from local or remote disk. Address relocation can be
performed at system-build time under VAXELN because the System
Builder has determined the user and system base virtual addresses of

2-52 The VAXELN System Image

every shareable image in the system. Once these base virtual addresses
are known, address relocation can proceed.

Address relocation, or fixup, is required for images (executable and
shareable) that make general-mode (G”) and .ADDRESS references to
locations — data or routine entry points — within shareable images.
The information the System Builder requires to perform address reloca-
tion is stored in an image’s fixup vector section — the SHL and the G~
and .ADDRESS vector tables — and in a series of internal structures
built during the creation of an image’s KSDs. An image’s SHL contains
a list entry and fixup tables for each shareable image referenced.

The G* and .ADDRESS vector tables record a series of offsets. For G*
references, the table records the offset from the base of the referenced
shareable image to the actual location referenced. The G* location
itself contains the address of the associated G» vector within the G*
vector table. When processed by the VMS Linker, G* references are
translated to @LA references (longword relative deferred). When the G*
operand is fetched during program execution, the deferred address of
the referenced location in the shareable image is obtained by vectoring
the reference through the G* vector in the vector table.

For .ADDRESS references, the vector table records the offset from the
base of the referencing image to the location of the . ADDRESS directive
within the referencing image. The .ADDRESS cell itself contains the
offset from the base of the referenced shareable image to the actual
location referenced.

In general, address relocation fixup involves adding the base address of
the referenced shareable image to the G* or ADDRESS cell offset. The
base address of the referenced shareable image used for the fixup is
determined by whether the shareable image contains writeable image
sections. If it does — that is, the SHT$V_LOCAL_COPY bit is set in
the shareable image descriptor — then the image is mapped into the
referencing program’s virtual address space. If the shareable image

is pure, then its base address is the system virtual address at which
the image appears in the system image. (Since shareable images that
contain .ADDRESS references are always writeable, they are fixed up
using base addresses within the referencing program’s address space.)

To perform address relocation, the System Builder scans an internal
list of fixup control blocks and processes each entry in the list. Each
control block describes the location of a fixup section within the system
image file. Other internal information allows the System Builder to
locate the image sections that contain .ADDRESS references as well.
The process of address relocation proceeds as follows:

The VAXELN System Image 2-53

1. The System Builder reads a fixup section into an internal buffer
and locates the SHL entry for the first shared image referenced.
The fixup section can be native to the referencing program (that
is, one generated by the VMS Linker), or it can be one of the local
copies of a writeable shareable image’s fixup section appended to
the end of a shareable image in the system image file.

2. The image identification stored in the fixup control block is com-
pared to the identification in the SHT$L_IDENT field in the de-
scriptor for the referenced shareable image (the address of the
descriptor is stored in the SHL$L_SHLPTR field in the SHL entry
for the image). If the two identifications do not match according
to the match control specified for the shareable image (match-all,
match-if-equal, or match-if-less-than-or-equal), then a warning
message citing the shareable image and the referencing program
is generated, and processing stops for this fixup vector. The iden-
tification information is checked for each shareable image in the
SHL.

3. If the fixup vector contains G” references, the base address of the
referenced shareable image is added to each offset in the G fixup
table entry, yielding the actual address of the referenced locations
within the shareable image.

If the shareable image is pure, then the system base address for the
image, stored in the System Builder’s internal copy of the shareable
image descriptor, is used for the fixup calculation. If the referenced
shareable image is writeable (SHT$V_LOCAL_COPY is set), the
value stored in SHL$L_BASEVA is used in the fixup calculation;
this address represents the base address of the shareable image
within the referencing program’s address space.

4, If the fixup section contains .ADDRESS fixups, the System Builder
reads into memory the image section or sections in the referencing
program containing the .ADDRESS directives. The fixup will be
made on the duplicate (private) copy of the .ADDRESS section
appended to the end of the shareable image in the system image
file. (These sections are described by private KSDs — with the
KSD$V_RWADDRDATA bit set — in the referencing program’s list
of KSDs.)

A .ADDRESS cell within a section is located by adding the base
address of the image containing the .ADDRESS directive to the
offset in the ADDRESS fixup table entry. Finally, the fixup is made
by adding the base address of the shareable image to the offset
stored in the .ADDRESS cell, yielding the address of the referenced
location within the referenced shareable image.

2-54 The VAXELN System Image

Because shareable images with .ADDRESS references are write-
able, the system base address for the image, the value stored in
SHLS$L_BASEVA, is used in the fixup calculation. This address
represents the base address of the shareable image within the
referencing program’s address space.

The entire process is repeated for every .ADDRESS reference
within the referencing program.

5. The process is repeated for the next fixup control block. When
the System Builder has exhausted the list of fixup control blocks,
address relocation is complete.

2.6.3 A Shareable Image Example

Even a simple program linked against a shareable image library can
require elaborate shareable image support from the System Builder.

This section presents just such a simple program, written in C, and

uses an excerpt from a full System Builder map to examine how the
System Builder supports the program’s use of shareable images.

Consider the following C program, which writes a single line to the
standard output device:

#include $vaxelnc

test ()

{
printf ("Hello, world!\n");

}

Compiling the program, linking it against the CRTLSHARE shareable
library, and building it into a VAXELN system image produces the
following program entry in a full System Builder map:

TEST DISK: [USER]TEST.EXE; 1

No debug, Run, No initialize, Mode = User
User stack = 1, Kernel stack =1

Job priority = 16, Process priority = 8
Job message limit = 16384

Power recovery exception = Disabled
Argument (s) :

The VAXELN System Image 2-55

Image section(s):

Type

Noshr Write
Read-only
Fixup vector
Read-only
Noshr Write
Fixup vector
Shareable
Fixup vector

Transfer address:

Base VA
00000200
00000400
00000600
00000800
00005400
00005600
00005a00
00007E00

00000400

Page (s)
1
1
1
38
1
2
20
1

Image

DCIO (1)
DCIO (2)

CMsC

Notice in particular the composition of the image sections. Compare
them with the map’s ISDs for the shareable images DCIO.EXE (C I/0
routines) and CMSC.EXE (general-purpose C routines) referenced by

TEST.EXE:

DCIO

CMsC

SYS$SYSDEVICE: [ELN]DCIO.EXE; 2
Major Id: 2, Minor Id: 0
Map into program region
Image section(s):

Type
Read-only
Noshr Write
Fixup vector

Base VA
80008A00
8000D600
8000D800

SYS$SYSDEVICE: [ELN] CMSC.EXE; 2
Major Id: 2, Minor Id: O
Map into program region = Yes
Image section(s):

Type
Read-only
Noshr Write
Fixup vector

Base VA

8000E200
80010800
80010A00

Yes

Page (s)
38
1
2

Page (s)
20
1
1

As both entries show, each shareable image will be mapped into the
referencing program’s address space at run time — 41 pages from
DCIO and 22 pages from CMSC (including their fixup vector pages).

Both images appear in the entry for TEST.EXE because the System

Builder has inserted a KSD or KSDs describing the shareable images
into the list of KSDs for TEST.EXE. Table 2-10 explains the source of
each image section created for TEST.EXE.

2-56 The VAXELN System Image

Table 2-10:

KSDs and Image Sections for TEST.EXE

Section

Pages Source

Explanation

Noshr Write

Read-only
Fixup vector

Read-only

Noshr Write

Fixup vector

1

1

38

2

TEST.EXE

TEST.EXE
TEST.EXE

DCIO.EXE

DCIO.EXE

DCIO.EXE

A writeable, private section generated by the VAX C
compiler to hold the string constant “Hello, world\ n”.

The read-only code for the program.

The fixup section generated to record the program’s
shareable-image references and a G* fixup vector table
entry for its single reference to the printf function in the
shareable image DCIO.EXE.

The read-only code in the DCIO shareable image. Because
DCIO.EXE contains .ADDRESS references (demonstrable

by running ANALYZE/IMAGE on DCIO.EXE), the System
Builder copies all its KSDs into TEST.EXE’s KSD list.

The page in DCIO.EXE that contains its six .ADDRESS
references. The KSD for this section was copied from
DCIO.EXE’s KSD list into TEST.EXE’s KSD list.
TEST.EXE’s copy of the KSD actually maps a private
copy of the page in DCIO.EXE that the System Builder
appended to the end of the shareable image. The System
Builder performed .ADDRESS fixups on this duplicate
fixup section to resolve DCIO.EXE’s .ADDRESS refer-
ences to itself within TEST.EXE’s address space. See
Section 2.6.2.1.4.2 for a description of how private copies
of .ADDRESS sections are made.

A private copy of DCIO.EXE'’s two-page fixup section,
which contains the fixup information for the shareable
image’s G and .ADDRESS references to other shareable
images. Because DCIO.EXE is writeable, the System
Builder inserts a KSD describing the fixup section into
TEST.EXE’s KSD list. TEST.EXE’s copy of the KSD actu-
ally maps a private copy of fixup pages in DCIO.EXE that
the System Builder appended to the end of the shareable
image. The System Builder performed G fixups on this
duplicate fixup section to resolve DCIO.EXE’s general-
mode references within TEST.EXE’s address space. See
Section 2.6.2.1.4.2 for a description of how private copies
of fixup sections are made.

The VAXELN System Image 2-57

Table 2—10 (Cont.): KSDs and Image Sections for TEST.EXE

Section

Pages Source Explanation

Shareable

Fixup vector

20 CMSC.EXE A global KSD inserted in TEST.EXE’s KSD list to map

CMSC.EXE'’s image sections. Although 20 of CMSC.EXE'’s
21 pages are read-only code, its one writeable page
means that the shareable image must be mapped into
TEST.EXE'’s address space. Although CMSC.EXE is not
referenced directly by TEXT.EXE, it is referenced by
DCIO.EXE and is therefore included in the system image.

1 CMSC.EXE A private copy of CMSC.EXE'’s fixup section, which

contains the fixup information for the shareable im-

age’s G” references to other shareable images. Because
CMSC.EXE is writeable, the System Builder inserts a
KSD describing the fixup section into TEST.EXE’s KSD
list. TEST.EXE’s copy of the KSD actually maps a private
copy of fixup pages in CMSC.EXE that the System Builder
appends to the end of the shareable image. The System
Builder performed G” fixups on this duplicate fixup sec-
tion to resolve CMSC.EXFE’s general-mode references
within TEST.EXE’s address space.

The growth in the size of DCIO.EXE in response to the addition of
the duplicate . ADDRESS and fixup sections can be demonstrated by
building successive versions of the C program into the system image
under different names — call them TEST1.EXE and TEST2.EXE. The
number of pages DCIO.EXE occupies in the system image can then be
determined by subtracting the base system address of DCIO.EXE from
the base system address of the shareable image that follows it in the
system image; in this case, CMSC.EXE.

With only TEST.EXE built into the system, the base address of
the DCIO.EXE is 800084001¢. The base address of CMSC.EXE is
8000E200+4, yielding a difference of 58001¢ or 44 pages. This figure
reflects DCIO.EXE’s native size of 41 pages plus the three pages
added for TEST.EXE’s private copies of the one page containing the
ADDRESS cells and the two pages containing the fixup section.

With both TEST.EXE and TEST1.EXE built into the image, the
base address of DCIO.EXE is 800090001¢ and that of CMSC.EXE is
now 8000E E00;¢, yielding a size of 47 pages for DCIO.EXE. Adding
TEST2.EXE to the system image gives DCIO.EXE a base address
of 80009800,¢ and CMSC.EXE a base address of 8000F C004¢, giving

2-58 The VAXELN System Image

DCIO.EXE a size of 50 pages. (The base address of DCIO.EXE in-
creases because the addition of programs forces it to a higher address
in the system image.)

As becomes evident from the pattern established here, each time an-
other program references DCIO.EXE, the size of the shareable image
grows by three pages as it accommodates the referencing program’s
private copies of the image’s single ADDRESS page and two fixup
pages. The System Builder’s address relocation procedure ensures that
each program’s references are resolved through its private copies of the
ADDRESS and fixup sections.

The VAXELN System Image 2-59

Chapter 3

System Bootstrap, Kernel
Initialization, and Application
Start-Up

The goal of the VAXELN Kernel’s initialization sequence is to prepare
the system for the execution of VAXELN jobs and processes on the
target processor. Before the kernel can initialize itself, it must be
loaded into processor memory by the VAX primary bootstrap program,
VMB.

This chapter first describes, in Section 3.1, the role of VMB in loading
the VAXELN system image into memory and transferring control to
the code for the kernel’s initialization. Section 3.2 then focuses on the
initialization process itself, which proceeds through the three distinct
phases of the secondary bootstrap:

1. Unmapped initialization. Memory management is disabled while
the kernel creates essential system data structures and maps them
into system address space.

2. Enabling memory management. This allows the kernel to execute
using system virtual addresses.

3. Mapped initialization. The kernel creates and initializes the re-
mainder of its data structures, creates the start-up job, and com-
pletes its initialization by invoking the scheduler to begin job
execution.

Section 3.3 then describes how the VAXELN start-up job creates system
and user application jobs.

System Bootstrap, Kernel Initialization, and Application Start-Up 3-1

3.1 Primary Bootstrap: VMB

The VAX primary bootstrap program, called VMB, provides a general-
purpose method for bootstrapping VAX processors. VMB’s primary
functions are the following:

¢ To locate and determine the size of physical memory on the system

* To locate the secondary bootstrap program, load it into memory
from the boot device, and transfer control to it

For VAXELN systems, the secondary bootstrap program loaded
into memory is the VAXELN system image created by the System
Builder and described in Chapter 2, The VAXELN System Image.

The operation of VMB is described in some detail in the text VAX/VMS
Internals and Data Structures. This discussion will focus on the layout
of main memory that VMB establishes before it transfers control to the
secondary bootstrap program. This memory state is the starting point
for the kernel’s initialization.

Figure 3-1 shows the layout of memory as VMB transfers control to
the VAXELN Kernel and shows how the locations of those memory

structures are transmitted to the kernel. Table 3-1 describes these

structures.

3-2 System Bootstrap, Kernel Initialization, and Application Start-Up

Figure 3-1:

State of Physical Memory After VMB Executes

A

Restart Parameter Block (RPB)

Primary Bootstrap Program (VMB)
(Bootstrap Driver and $QIO Routine)

System Control Block (SCB) for VMB
(1 page)

A

Page Frame Number (PFN) Bitmap
(4 Pages)

Bootstrap Interrupt Stack
(3 Pages)

A

VAXELN Kernel
and the Remainder
of the System Image

R11

SCBB (SCB Base)

RPB$Q_PFNMAP + 4

SP, R10

RO through R5 contain initial bootstrap
parameters, which are copied into the
RPB by VMB.

AP in down-line loaded systems
points to the VMB parameter block.
MLO-003214

System Bootstrap, Kernel Initialization, and Application Start-Up 3-3

Table 3—1: Bootstrap Elements in Memory After VMB Executes

Element Description

Restart parameter block A 512-byte structure that stores bootstrap param-

(RPB) eters (loaded by VMB), system values (loaded by
the kernel), and volatile machine state informa-
tion (loaded by KER$POWER_FAIL in module
POWERFAIL) to enable system restart after a
power failure (although restarts are not supported).

For example, VMB stores the size and address

of the page frame number (PFN) bitmap in the
quadword RPB$Q_PFNMAP; the kernel then uses
and updates this field when it initializes its own

PFN bitmap.
Primary bootstrap pro- The VMB image. VMB occupies fewer than 64K
gram bytes of memory. Most of the VMB image is over-

written as the secondary bootstrap program is read
into memory. All that remains of VMB at this point
is the appropriate bootstrap driver and a skeletal
$QIO routine. These remainders of the VMB image
are eventually overwritten as the kernel begins to
allocate the page frames they occupy.

System control block A one-page structure that contains vectors for

(SCB) interrupt, exception, and machine-check handlers
for VMB’s execution. The kernel creates its own
boot-time SCB at a different location; therefore,
VMB’s SCB is eventually overwritten.

34 System Bootstrap, Kernel Initialization, and Application Start-Up

Table 3—1 (Cont.): Bootstrap Elements in Memory After VMB

Executes
Element Description
Page fram number A bitmap that contains one set bit for each good
(PFN) bitmap page of memory located by the bootstrap’s memory-

testing sequence.

The first longword in the quadword RPB$Q_
PFNMAP contains the size in bytes of the bitmap;
the second longword contains the physical address
of the bitmap. On systems with 8 megabytes or
fewer of memory, the PFN bitmap is held in these
original four pages; otherwise, the bitmap is located
in contiguous page frames at the high end of main
memory.

When the kernel initializes, it copies and maps
the bitmap, and the pages occupied by the original
bitmap are eventually overwritten.

Initially, the bitmap shows all good page frames

as available, including those occupied by the VMB
structures. Any frames not marked in the bitmap
are eventually overwritten by subsequent alloca-
tions of physical memory. Therefore, the kernel
marks the page frames occupied by those structures
that it will keep — the RPB and the system image

— as used.
Bootstrap interrupt The stack used by VMB during its execution. When
stack control is transferred to the kernel, the stack

pointer (SP) points to the base of this stack. The
kernel uses this stack, which grows toward lower
addresses, until memory management is enabled,
at which time the kernel’s interrupt stack is used.
After this, the pages occupied by the original stack
are eventually overwritten.

VAXELN Kernel The secondary bootstrap program. VMB transfers
control to the first byte in the VAXELN system
image that it has loaded into memory.

System Bootstrap, Kernel Initialization, and Application Start-Up 3-5

3.2 Secondary Bootstrap: Initializing the Kernel

Once the system image has been loaded into physical memory on the
target processor, control is transferred to the first byte in the image.
That byte is a Branch with Word Displacement (BRW) instruction to
transfer control to the start of the kernel initialization code, at label
KER$START in module INITIAL. The kernel’s execution begins in the
following environment:

* Memory management is disabled.

¢ IPL is set to 31, disabling all interrupts.

¢ Execution is on the boot interrupt stack.

¢ Memory is organized as shown in Figure 3-1.

The following sections describe the kernel’s initialization, which occurs
in three stages:

1. Unmapped initialization (Section 3.2.2)
2. Enabling memory management (Section 3.2.3)
3. Mapped initialization (Section 3.2.4)

Most of the initialization sequence does not depend on the type of pro-
cessor executing the code. However, certain portions of the sequence,
such as the initialization of I/O adapters and the SCB, do require
processor- or bus-specific code. The mechanism the kernel uses to
support processor-dependent initialization is described in Section 3.2.1.

After initialization completes, system virtual memory is structured as
shown in Figure 3-2. Table 3—2 describes the structures mapped into
S0 memory during initialization.

3-6 System Bootstrap, Kernel Initialization, and Application Start-Up

Figure 3—2: Mapping of the SO Region by the Kernel

180000000
VAXELN System Image

Restart Parameter Block

Console 1/O Context Block

System Control Block
and Unexpected-Event Block

Page Frame Number Bitmap

Interrupt Stack
{one per processor)

Processor-Specific Registers

Machine-Check Handler Data

System Page Table

Console Registers and Data

Crash-Restart Log

Error-Log Message Buffer Pool

System Dynamic Pool

PO Page Table Siots

P1 Page Table Slots

Port Address Table

Local Name Table

Local Debugger Data

Communication Region Bitmap

Adapter I/O Space

Communication Region

Maximum SO Size

Unmapped Portion
of SO Space
m oo - === - = - BFFFFFFC

MLO-003218

|
1
|
|
-

System Bootstrap, Kernel Initialization, and Application Start-Up 3-7

Table 3-2: System Components Mapped into SO Address Space

Component

Description

System image

Restart parameter block
Console I/O context block

System control block (SCB) and
unexpected-event dispatch block

Page frame number (PFN)
bitmap

Interrupt stack

Processor-specific registers

Machine-check handler data

System page table

Console registers and data

The memory-resident image of the system image file pro-
duced by the System Builder. The system image is mapped
from the base of SO space — 8000000016 — for the number of
page frames equal to KER$GW_SYSTEM_SIZE. Chapter 2
describes the components of a system image.

The structure created by VMB. See Table 3-1.

A block containing pointers to data and flags required by the
console /O subsystem.

A multipage structure containing the addresses (vectors) of
routines to handle exceptions and interrupts. The size of the
SCB varies from processor to processor.

Identical in size to the SCB, the unexpected-event dispatch
block contains instructions that transfer control to a handler
routine when unexpected interrupts or exceptions occur.

The structure representing available pages of physical
memory. See Table 3-1.

The stack used when the system is running in system
context; for instance, during system initialization and the
execution of device interrupt service routines. Code that
runs on the interrupt stack can reference only system
addresses.

The system virtual address region to which the processor-
specific registers (such as the MicroVAX system-extension
identification register) are mapped. These registers are
accessed with MOV instructions and should not be confused
with the architecturally defined internal processor registers
accessed with MTPR and MFPR instructions.

The system virtual address region that maps processor-
specific data used during machine-check handling.

The VAX page table that maps the entire system region.
This table supports the translation of system virtual ad-
dresses to physical addresses.

The system virtual address region that maps the console /O
registers and data that enable the kernel to write messages
directly to the system console.

3-8 System Bootstrap, Kernel Initialization, and Application Start-Up

Table 3-2 (Cont.): System Components Mapped into SO Address Space

Component

Description

Crash-restart log

Error-log message buffer pool

System dynamic pool

PO page table slots

P1 page table slots

Port address table

Local name table

Local debugger data

Communication region bitmap

The system virtual address region that maps buffers used
during the orderly shutdown of the system after a fatal
system bugcheck.

The system virtual address region that maps a number of
buffers — set by the Number of buffers value on the Error
Log Characteristics Menu — available for storing posted
error log entries before they are written to the error log file.
The size of each buffer is determined by the global value
KER$GW_EMB_SIZE (1 page).

The address range that maps a number of 128-byte
blocks — set by the Dynamic pool value on the System
Characteristics Menu — available for the creation of kernel
objects and related system components.

A block of system virtual addresses reserved for PO page
tables, their allocation bitmaps, and the PO page table slot
bitmap.

A block of system virtual addresses reserved for P1 page
tables, their allocation bitmaps, and the P1 page table slot
bitmap.

A block of system virtual addresses reserved for the ad-
dresses of the port objects created by the jobs in the system.
The table contains the number of longwords specified as the
global parameter value KER§GW_PORT_SIZE.

A block of system virtual addresses reserved for the list-
heads for the local name table, in which the kernel records
names associated with local port objects. The table con-
tains the number of table listheads specified by the global
parameter value KER$GW_NAME_SIZE (128).

The system virtual address region that maps a buffer used
by the local debugger. This buffer exists only on systems
that include local debugging support.

The bitmap used to control the allocation of virtual pages in
the communication region.

System Bootstrap, Kernel Initialization, and Application Start-Up 3-9

Table 3-2 (Cont.): System Components Mapped into SO Address Space

Component Description

Adapter I/O space The system virtual address region that maps the VAX
physical addresses reserved for I/O adapters, such as VAXBI
nodes and UNIBUS adapters, and control/status registers.

Communication region A block of system virtual addresses reserved for the alloca-

tion of device communication regions and dynamic program
space, and for job allocation of SO memory.

Accompanying the region is an allocation bitmap. The size
of the region (and its bitmap) is determined by the global
parameter value KER$GW_IO_SIZE, which combines the
values of the System region size and Dynamic program
space entries on the System Characteristics Menu. The
word size of the value limits the size of the communication
region to 65,535 pages (32 megabytes).

3.2.1 Processor-Specific Factors

When initialization requires a processor-specific operation, the kernel
calls generic internal subroutines to perform the operation appropriate
for the target processor. The processor-specific initialization operations
include:

* Configuring I/0 address space

* Mapping I/O address space

* Creating the system control block

¢ Initializing machine-check data blocks

* Mapping and initializing processor-specific registers

For example, to determine the size of the SCB required by the target
processor, the kernel calls the generic subroutine KER$SCB_PAGCNT,
which returns the number of SCB pages required for the processor
type. The code executed in the subroutine depends on the type of
kernel executing; that is, KER$SCB_PAGCNT returns a different value
when called in the kernel for Q22-bus-based processors than it does in
the kernel for VAXBI-based processors.

3-10 System Bootstrap, Kernel Initialization, and Application Start-Up

The processor-specific version of these subroutines is included when
the kernel image for the processors is linked. For example, when the
8NNKER kernel is linked, it includes the processor-specific initializa-
tion module INIT8NN. One INITrnrnn module exists for each processor
supported by the kernel. When the kernel calls one of the generic
subroutines, such as KER$SCB_PAGCNT, control is transferred to
the subroutine in module INIT8NN, which returns the number of
SCB pages required by the VAXBI-based processors supported by that
module.

In the QBUSKER and UBUSKER versions of the kernel, processor-
specific subroutine calls are vectored through an intermediate, bus-
specific module, either COMBQ22BUS or COMBUNIBUS, which is
also included at link time for QBUSKER and UBUSKER. These mod-
ules contain the generic subroutine entry points, such as KER$SCB_
PAGCNT, which in turn dispatch the call at run time (through a CASE
instruction) to a processor-specific routine based on the exact processor

type.

For example, when the kernel calls KER$SCB_PAGCNT while execut-
ing on a MicroVAX Il-based processor (KA620 or KA630), control is first
transferred to the generic subroutine entry point in the COMBQ22BUS
module. That routine then determines the processor type and trans-
fers control to the processor-specific subroutine UV2$SCB_PAGCNT in
module INITUV2.

The kernel does on occasion determine the processor type in line, when
only a few instructions are involved. Usually, the type of processor can
be determined from the contents of the global value KER$GB_CPU_
TYPE, which is set early in the initialization sequence. Processor type
can also be determined from global Boolean values such as KER$GB_
RTVAX, which indicates that processor is a KA620.

3.2.2 Unmapped Initialization

When VMB transfers control to the kernel, VAX memory management
— mapping — is disabled, and the processor uses the physical ad-
dresses of code and data. The major goal of this first, unmapped phase
of initialization is to create and initialize the system page table so that
memory management can be enabled.

System Bootstrap, Kernel Initialization, and Application Start-Up 3-11

During unmapped initialization, the kernel keeps track of both the
current physical and system virtual addresses of the data structures it
creates. Once a structure is created, consuming physical and virtual
address space, these addresses are updated to reflect the next available
page of physical and virtual memory.

Unmapped initialization follows these basic steps:

1. The address of the first available page of physical memory is deter-
mined. If the system image resides in ROM, the system data block
is copied to writeable memory. See Section 3.2.2.1.

2. The console is initialized for I/O from the kernel, and the console
1/0 context block is allocated and initialized. See Section 3.2.2.2.

3. The SCB is initialized with the address of kernel boot-time inter-
rupt, exception, and machine-check handlers. See Section 3.2.2.3.

4. The processor type is determined. In tightly coupled symmetric
multiprocessing systems, the number of available processors is also
determined. See Section 3.2.2.4.

5. Certain values are copied from the system parameter block to
the system data block. On down-line loaded systems, the system
node name and address are saved in the data block as well. See
Section 3.2.2.5.

6. The PFN bitmap is copied to its final location, and its bitmap
descriptor is initialized. See Section 3.2.2.6.

7. The physical and virtual memory sizes of the system data struc-
tures are computed. See Section 3.2.2.7.

8. The system page table is created, and the system structures are
mapped into it. See Section 3.2.2.8.

3.2.2.1 Step 1 — Find the First Writeable Page and Copy ROM Data

The kernel determines the address of the first writeable page of mem-
ory by adding the number of pages in the system image (KER$GW_
SYSTEM_SIZE) to the number of pages by which the beginning of the
system image is offset from the base of memory. This offset is repre-
sented by the physical address of the global location KER$VECTOR_
START.

If the system is not executing from ROM, this first writeable page is
the first page in memory following the system image, and the kernel
sets the value of KER$GL_FIRST_WRT_PAGE to 0. Otherwise, the
first writeable page is the first page in memory, pointed to by R10
and SP. (The value of KER$GL_FIRST WRT_PAGE is used during

3-12 System Bootstrap, Kernel Initialization, and Application Start-Up

job creation to determine whether the memory of a shareable, write-
able image section must be copied from ROM. A nonzero value for
KER$GL_FIRST WRT_PAGE means that the copy must be made.
See Section 2.6.2.1.3, ISD$V_WRT Flag Set and ISD$V_CRF Clear —
Shareable Data Sections.)

When a VAXELN system is booted from ROM on a MicroVAX I target,
the kernel copies the system data block from its location in read-only
memory to the first writeable pages of memory. The base address

of the data block, once represented by the value of the global label
KER$GR_KERNEL_DATA, is now the physical address of the copied
data, and the first writeable page is now the physical address of the
page following the new data block. Subsequent allocations of physical
memory begin with that page.

Even though the data block is actually copied only on ROM-based
MicroVAX I systems, in all cases the kernel subsequently writes to
data cells using each cell’s relative displacement from the physical
base of the data block. This form of reference is required when the
data has been copied because the original addresses of the data cells,
represented by their symbolic names, have been rendered invalid by
the displacement of the data block. Therefore, to write to a data cell,
the kernel determines the location of the cell by subtracting the virtual
address of the base of the data block (KER$GR_KERNEL_DATA) from
the virtual address of the data cell, represented by its KER$ symbolic
name, for example, KER$GA_SPT PHYSICAL.

Throughout the unmapped phase of initialization, the kernel stores the
physical address of the data block in a general register (R8). Therefore,
the kernel would write the value of KER$GA_SPT _PHYSICAL in the

following manner:
MOVL R11,WAKER$GA_SPT_PHYSICAL-KER$GR_KERNEL_ DATA (R8)

The virtual address of the original location of the data block is sub-
tracted from the virtual address of data cell KER$GA_SPT_PHYSICAL.
The result represents the byte offset of the data cell within the block.
This value is then used as a byte displacement from the physical base
of the block, stored in R8, to yield the physical address of the cell. The
data is then written to that location. Subsequent reads of KER$GA_
SPT_PHYSICAL must also use this technique, because the updated
value must be read from the potentially relocated data block.

System Bootstrap, Kernel Initialization, and Application Start-Up 3-13

Later in unmapped initialization, the kernel determines whether it
has copied the data block by comparing the current base address of
the block to the value of KER$GR_KERNEL_DATA. If the values are
different, the kernel then maps the relocated data block into the SO
page table entries that had mapped the original data block in ROM.
When memory management is enabled, the relocated data cells can
then be referenced by their symbolic names, because their virtual
addresses have been remapped to their new physical locations in the
data block.

3.2.2.2 Step 2 — Initialize the Console

The kernel initializes the system console for I/O by calling the internal
subroutine KER$CONIO_INITIAL (in module CONSOLIO). This func-

tion obtains the byte offset of the console I/O shareable image from the
parameter KER$GL_BIOS_OFFSET and adds it to the physical base of
the system image, yielding the physical address of the console I/O code.
This address is then stored in KER$GA_CONIO_CODE.

The subroutine then calls the console I/O routine to initialize the
console registers by vectoring a procedure call through the address

in KER$GA_CONIO_CODE. Because this is a physical address, the
console will have to be reinitialized during mapped initialization so that
the virtual address of the console I/O code can be written to KER$GA_
CONIO_CODE. On certain processors, console initialization includes
the creation and initialization of a console I/0O context block to record
the addresses of components such as fonts and graphics controller
control/status registers.

The kernel does not normally write to the console during unmapped
initialization, but, because the console might receive boot-time error
and machine-check messages, it must be initialized during this phase
of execution.

3.2.2.3 Step 3 — Initialize the Boot-Time SCB

For the unmapped phase of initialization, the kernel establishes a
special SCB to handle unexpected interrupts, exceptions, and machine
checks.

To create the SCB, the kernel obtains the size in pages of the SCB

for the target processor (by calling the subroutine KER$SCB_PAGCNT)
and fills each longword vector in those pages with the address of a boot-
time interrupt/exception handler. The second longword in the SCB —

3-14 System Bootstrap, Kernel Initialization, and Application Start-Up

the machine-check vector — is filled with the address of the boot-time
machine-check handler.

The first page of the SCB occupies the first page in memory beyond the
system image or beyond the console I/O context block (if one is present),
and the physical address of that page becomes the value of the SCBB
(SCB base) privileged register. (When the system image is in ROM, the
SCB begins on the first page after the relocated kernel data block or
after the console I/0 context block.)

The unexpected interrupt/exception handler and the machine-check
handler are the local subroutines BOOT_INTEXC and BOOT_
MACHINECHK, respectively. Both routines display an error mes-
sage on the console and place the processor in an infinite loop to await
the manual halt and reboot of the processor.

3.2.2.4 Step 4 — Determine the Processor Type

The kernel must determine early in initialization whether it is compat-
ible with the target processor. This determination is made by calling
the processor-specific subroutine KER$CHECK_CPUID (in module
INITrnn). This routine reads the contents of the system identification
register (SID) and compares the processor identification there with the
identifications of the processors supported by the version of the execut-
ing kernel. If a mismatch occurs, the routine returns a failure value,
causing the kernel to display an error message on the console and enter
an infinite loop.

If the general processor type is supported — for example, a Q22-bus-
based processor — processor type is narrowed further — for example, a
MicroVAX II versus a MicroVAX 3600. Based on the value of the SID
register, the kernel sets or clears processor-type flags in the data block.
For example, on Q22-bus-based processors, the low bit in KER$B_
QBUS is set; on VAXBI-based processors, the KER$B_VAXBI flag is
set.

These processor flags are checked by some kernel routines to determine
whether certain processor-specific actions should be taken. For exam-
ple, when creating process page tables, the kernel checks the KER$GB_
RTVAX (KA620) flag. If it is set, physical addresses, instead of the
usual system virtual base addresses, are used as the values of POBR
and P1BR.

System Bootstrap, Kernel Initialization, and Application Start-Up 3-15

3.2.2.5 Step 5 — Copy Parameters to the Data Block

Values in the kernel parameter block (in module PARAMETER) that
are designated “initial” are copied to their respective cells in the kernel
data block (see Tables A-2 and A-1). For example, the read-only value
KER$GQ_INITIAL_CONNECT TIMEOUT set by the System Builder
is copied to the read/write cell KER$GQ_CONNECT_TIMEOUT in the
data block. The transfer of these data items allows their values to be
dynamically updated in future versions of the kernel.

If the system image was down-line loaded, the kernel copies the target’s
and host’s node names and addresses from the VMB parameter block
to KER$GQ_NODE_ADDRESS and KER$GT _NODE_NAME, and
KER$GQ_HOST_ADDRESS and KER$GT _HOST _NAME, respectively.

3.2.2.6 Step 6 — Initialize the PFN Bitmap

The kernel copies the PFN bitmap created during processor bootstrap
to the next free pages in memory. The bitmap descriptor located at
RPB$Q_PFNMAP in the RPB specifies the size and address of the
bitmap. If the Memory limit entry on the System Characteristics
Menu has been set to a nonzero value (in the system parameter
KER$GL_MEMORY_LIMIT), the kernel truncates the bitmap to the
specified length, effectively limiting the amount of physical memory
that the kernel recognizes.

A zeroed longword is appended to the end of the bitmap as a termina-
tor, and the quadword descriptor in the RPB is updated with the new
size and address of the PFN bitmap. The descriptor is used later to
map the bitmap and create the kernel’s own bitmap descriptor in the
data block.

3.2.2.7 Step 7 — Compute the Sizes of System Data Structures

Before the kernel can create the system page table, it must determine
the number of pages the system will occupy. Each page will be rep-
resented by one longword page table entry (PTE) in the system page
table (SPT). The kernel keeps two tallies: the number of physical pages
and the number of virtual pages.

The count of physical pages is used to determine the physical address
of the base of the SPT and whether the target contains enough physical
memory to contain those system structures that are mapped in the
system page table before the system page table itself is mapped; the
count of virtual pages is used to determine the size of the page table.

3-16 System Bootstrap, Kernel Initialization, and Application Start-Up

Therefore, the kernel counts only the physical sizes of structures that
are mapped into system address space before the system page table.

For example, the machine-check handler data block is mapped into sys-
tem address space before the system page table; therefore, its required
number of pages is added to both the counts of physical and virtual
pages. By contrast, the error-logging message buffer is mapped after
the system page table; therefore, its required number of pages is added
only to the count of virtual pages.

The global value KER$GW_SYSTEM_SIZE specifies the number of
pages occupied by the system image itself. The total system size is
calculated by adding the size of the system image to the size of the
following system data structures:

¢ The restart parameter block. This block occupies a single page.

* The console I/O context block. This block occupies the number of
pages required for data to support the console I/O subsystem. The
block exists only on systems that support workstation graphics
displays.

¢ The system control block and unexpected-event dispatch block. The
size of the SCB is processor-specific. The kernel calls KER$SCB_
PAGCNT to return the SCB size for the target processor. The
returned value is doubled to accommodate the unexpected-event
dispatch block. See Section 3.2.4.3.

¢ The PFN bitmap. The number of bytes in the PFN bitmap specified
in the RPB$Q_PFNMARP descriptor is used to calculate the number
of bitmap pages, rounded to the next page.

¢ The interrupt stack. The size of the interrupt stack is specified by
the value of the system parameter KER$GW_ISTACK_SIZE, set on
the System Characteristics Menu.

Since each processor in the system has its own interrupt stack, the
number of pages specified (plus one as an invalid-stack page), is
multiplied by the number of processors.

* Processor-specific registers. The number of pages required to map
process-specific registers, such as the system identification register
extension on MicroVAX processors, is determined by calling the
process-specific subroutine KER$REGSP_PAGCNT.

¢ Console registers and data. The number of pages required to map
the console’s registers and data block is determined by calling
console-specific I/O procedures.

System Bootstrap, Kernel Initialization, and Application Start-Up 3-17

¢ The machine-check handler data block, the crash-restart logs,
error-log message buffers, and dump control block and I/0O buffer.
The size of the machine-check handler data block is determined
by calling the processor-specific subroutine KER$MCHK_PAGCNT.
Since each processor in the system requires its own machine-check
data block, the number of pages is multiplied by the number of
Processors.

If error logging is enabled for the system, the value of KER$GW_
EMB_COUNT (set on the Error Log Characteristics Menu) is added
only to the total of virtual pages. The number of pages required for
the dump control block and the dump I/O buffer are read from the
code block for the system dump facility.

¢ The system dynamic pool. The number of pages in the system pool
is determined by the value of KER$GW_POOL_SIZE, set on the
System Characteristics Menu.

* The PO and P1 page table slots and associated bitmaps. The size
of a process page table slot includes the size of the page table itself
plus the size of its page table entry bitmap. The total number of
pages required to hold all the PO and P1 page table slots includes
the sizes of the two bitmaps that control the allocation of the page
table slots themselves. One bitmap page — the minimum allocation
for a bitmap — can represent 4096 (8 = 512) page table slots.
Figure 9-3 shows the layout of system memory reserved for the PO
and P1 page table slots.

Size requirements are determined as follows:

— The number of bits in the page table slot bitmap is determined
by the values of KER$GW_P0_SLOT_COUNT and KER$GW_
P1_SLOT_COUNT (set on the System Characteristics Menu),
rounded up to the next page.

— The number of pages required by the table slots is determined
by multiplying KER$GW_P0_SLOT_COUNT or KER$GW_P1_
SLOT_COUNT by the size in pages of a single PO or P1 page
table and its bitmap descriptor.

— The size of a page table, in pages, is determined by the value of
KER$GW_PO_SLOT _SIZE or KER$GW_P1_SLOT_SIZE (also
set on the System Characteristics Menu).

Since each page table page will map 128 pages of virtual mem-
ory, 128 bitmap bits — 16 bytes — is required for each page
table page.

3-18 System Bootstrap, Kernel Initialization, and Application Start-Up

Once the size in pages of a bitmap is determined, that value is
added to KER$GW_P0_SLOT_SIZE or KER$GW_P1_SLOT_SIZE
to yield the value of KER$GW_P0_SLOT_LENGTH and KER$GW_
P1_SLOT_LENGTH, respectively.

Since the page table slots are mapped after the system page table,
their sizes are added only to the count of virtual pages.

¢ The port address table. The value KER$GW_PORT_SIZE (set on
the System Characteristics Menu) specifies the number of ports the
system can support at one time. One page of the port address table
is required for each 128 ports requested.

¢ The local name table. The local name table requires eight bytes
for each name listhead. The number of listheads is determined by
the value of KER$GW_NAME_SIZE (128). One page is required for
every 64 listheads.

* I/O space and the communication region. The total number of
pages required to map these regions depends on the number of
pages required to map the system’s I/O space, the dynamic program
region, and the system region. This number of pages is determined
by the local subroutine COMPUTE_IO_SIZE.

COMPUTE_IO_SIZE uses the processor-specific subroutine
KER$COMPUTE_IOPAGCNT to obtain the number of pages re-
quired for I/0 space; this value is added to KER$GW_IO_SIZE
(which combines the System Builder values System region size
and Dynamic program space) to yield the number of pages in the
comm anication region. This total is added only to the virtual page
count.

* The system page table itself. Each page in the system page table
can map 128 pages of system virtual memory. Therefore, the size of
the page table is determined by the total number of virtual pages
in the system plus the number of page table pages required to map
those system virtual pages.

3.2.2.8 Step 8 — Initialize the System Page Table and Map Existing Components

Once the kernel has determined the maximum virtual size of the
system, the system page table can be created. The physical page count
becomes the page frame number (PFN) of the base address of the
system page table, and the virtual page total becomes the length of the
table.

System Bootstrap, Kernel Initialization, and Application Start-Up 3-19

The kernel compares the length of the page table with the length of
the PFN bitmap. If the bitmap contains fewer bits than the number
of virtual pages the page table can map, the system has insufficient
physical memory. Therefore, the kernel displays an error message on
the console and enters an infinite loop. If sufficient physical memory
exists, the physical address of the page table is written to the system
base register (SBR) and KER$GA_SPT_PHYSICAL, and the virtual
page total is written to the system length register (SLR) and KER$GL_
SPT_LENGTH.

With the system page table initialized, the kernel then begins mapping
selected system components in the page table. At this point, only
structures that already reside in physical memory are mapped. Once
they are mapped, memory management can be enabled. The top half of
Figure 3-2, down to the system page table, shows the elements mapped
at this stage of initialization.

The mapping is performed by calling the local subroutine KER$FILL_
SPTE. This routine creates a system page table entry for each page by
inserting the current physical page frame number into the SPTE speci-
fied by the kernel’s system page table entry pointer. After each SPTE is
created, the subroutine advances the values of the current page frame
number, the current system virtual address, and the address of the
next SPTE to be filled.

The routine also marks the page frame in use by setting its correspond-
ing bit in the PFN bitmap (only if the PFN is within the bitmap; for
example, physical addresses used to map 1I/O space are not represented
by bits in the PFN bitmap). KER$FILL_SPTE is called once for each
page frame mapped in the system page table.

The following system components, which precede the system page table
in virtual memory, are mapped in the system page table at this time:

* The system image. The kernel sets the current page frame counter
to indicate the start of the system image (KER$VECTOR_START),
calls KER$FILL_SPTE for each page specified by KER$GW_
SYSTEM_SIZE, and restores the page frame counter. Since the
first page of the system image is mapped in the first SPTE, the SO
addresses assigned to components in the system image — based at
800000001 — will be valid when memory management is enabled.

¢ The kernel data block. If the kernel’s data has been relocated from
its original location in MicroVAX I ROM, the kernel maps the data
into the SPTEs that mapped the original data block.

3-20 System Bootstrap, Kernel Initialization, and Application Start-Up

¢ The RPB. The current virtual address is written to KER$GA_RPB
to set the base of the RPB, and the block is mapped. The kernel
also completes the initialization of the RPB at this point.

¢ The console I/O context block. The current virtual address is writ-
ten to KER$AA_CONIO_CONTEXT + 4 to set the virtual base of
the context block. Each page in the block is mapped.

* The SCB. The current virtual address is written to KER$GA_SCB_
BASE. The number of pages in the SCB is returned by calling
KER$SCB_PAGCNT and is doubled to account for the size of the
unexpected-event dispatch block that follows the SCB. Each page of
both blocks is mapped.

¢ The PFN bitmap. The PFN bitmap descriptor located at KER$GR_
PAGE_BITMAP is initialized with the length and virtual address of
the bitmap. Each page is mapped.

* The interrupt stack. The interrupt stack for each processor is
mapped, and the SPTE representing the end page in each stack is
cleared.

* Processor-specific registers. These registers are mapped by calling
the processor-specific subroutine KER$REGSP_MAP, which returns
the address of a table that describes the registers specific to that
processor. This address is then passed to the local subroutine
MAP_REGSPACE to perform the actual mapping. The current
virtual address becomes the value of KER$GA_CPUREGSP.

* The machine-check handler data block. The number of pages for
the machine-check handler data block is determined by calling the
processor-specific subroutine KER$MCHK_PAGCNT. That number
of pages is mapped for each processor in the system, and the virtual
address of each block is written to the array located at KER$GA_
MACHINECHEK_DATA, indexed by processor number.

¢ The system page table itself. The SPT is the last component to
be mapped before memory management is enabled. The current
virtual address becomes the value of KER$GA_SPT_BASE, and the
value of KER$GA_SPT_PHYSICAL is used to determine the first
page frame to be mapped.

Once these items have been mapped, the kernel begins the process of
enabling memory management, as described in Section 3.2.3.

System Bootstrap, Kernel Initialization, and Application Start-Up 3-21

3.2.3 Enabling Memory Management

The kernel prepares to enable memory management by superimposing
a temporary PO page table over the portion of the SO page table that
maps the kernel’s initialization code. When memory management

is enabled, a single instruction is executed in P0 space to load the
program counter (PC) with the SO address of the next initialization
instruction.

The instruction that transfers execution to SO space is executed in
PO space because its physical address can be mapped to an identical
PO address. The range of PO space addresses 0 to 3F FFFFF Fig also
describes the maximum range of physical addresses supported by the
VAX architecture. This guarantees that a PO address will match the
physical address of the instruction that initiates execution in system
space.

Figure 3-3 shows how the kernel overlays the SO page table with the
temporary PO page table, enables memory management, and transfers
control to a system virtual address. The technique depends on displac-
ing the base of the PO page table from the start of the SO page table
to account for the page offset of the kernel from the start of physical
memory. Because the system image is the first element mapped in
the SO page table, the first page of the kernel is mapped by the first
SPTE. This displacement means that when the physical address of
the first mapped instruction is interpreted as a PO virtual address, its
translation will again yield the physical address of that instruction.

The kernel sets up the temporary PO page table with the following
steps. The sample values presented in the discussion refer to those
shown in Figures 34 and 3-5, which illustrate the relationship of

the SO and PO page tables to the physical memory they map. These
instructions execute with memory management disabled, so all memory
references are to physical addresses.

3-22 System Bootstrap, Kernel Initialization, and Application Start-Up

Figure 3-3: Kernel Code That Enables Memory Management

MAPEN ENABLE :
MOVAB WAKERSVECTOR_START, RO ; get physical address of kernel

ASHL #—VASV_VPN,RO,RO ; compute its base PFN
MNEGL RO, R1 ; negate the PFN
BLBS WAKERSGB_RTVAX-- branch if Ka620
KER$GR_KERNEL DATA(RB),10$
MOVL WAKER$GA_SPT BASE-- ; get virtual address of SPT
KER$GR_KERNEL DATA (R8) ,R2
BRB 20$; rejoin common code
108: MOVL WAKERSGA_SPT_PHYSICAL-- ; get physical address of SPT
KERSGR_ KERNEL _DATA (R8) ,R2
20$: MOVAL (R2) [R1],R1 ; compute equivalent POPT base address
MTPR R1, #PR$_POBR ; set base address of PO page table
ADDL3 AP,RO,R1 ; compute length of PO page table
MTPR R1, #PR$_POLR ; set length of PO page table
INVALID_ALL ; invalidate entire translation buffer
mtpr #0, #PRS_TBIA
MTPR #1, #PR$_MAPEN ; enable memory management
JMP @#MAPPED_EXECUTION ; set PC to a system virtual address
MAPPED EXECUTION: ; begin mapped execution...
GETCPU RO ; get current processor number
clrl RO

System Bootstrap, Kernel Initialization, and Application Start-Up 3-23

Figure 3—4: Enabling Memory Management Through the Temporary
PO Page Table, Part 1

Temporary PO Page Table

A A POBR (80035B4C,,)
| [
| 1
; 45 Dummy ; Offset from base of
SPT to align POPTE and
1 POPTEs 1 [SPTE for page frame 54
: : (80035C00,,-45 longwords)
1 |
@ r—- T <— KER$GA_SPT_BASE
Y | PFN = 45 1 (80035C00,,)
Indexing into I =~ . '
POPT with | e J
VPN 54 yields I~ T
the POPTE for | 47 !
page frame 54.F — — e ' Double-mapped
I 48 ! S0 and PO PTEs
r—- 1
| 49 AT]
r=- T
| 50 24]
Fr=- T
1 51 B |
| it T
i 52 5 |
P-- T
] 53 53 1
— - - +
I 54 2 —
54
P=-- t +
: : 258 byte offset
| ! -

MLO-003216

3-24 System Bootstrap, Kernel Initialization, and Application Start-Up

Figure 3-5: Enabling Memory Management Through the Temporary
PO Page Table, Part 2

Physical Memory

Page Frame 0

Page Frame 45

::KER$VECTOR_START

46

Kernel Vectors

47

48

Kernel Data

49

50

51

52

Start of INITIAL

53

®

The JMP puts the
S0 address of
MAPPED_EXECUTION
into the PC.

Y

54

MTPR #1, PRS_MAPEN
JMP @#MAPPED_EXECUTION

MAPPED EXECUTION:
GETCPU RO

©)

«— After this instruction
PC=6D02 (PFN 54, Byte 258).
PFN 54 becomes the PO VPN
index into the POPT when
6DO02 is translated as a

PO address in (.

MLO-003217

System Bootstrap, Kernel Initialization, and Application Start-Up 3-25

1. The physical address of the kernel’s base — represented by the
global label KER$VECTOR_START — is obtained. In Figure 3-5,
that physical address is 5A4004¢.

2. The PFN field of the physical address is extracted. This value
represents the page offset of the base of the kernel image from the
start of memory. In Figure 3-5, this means that the kernel starts
on the 45th page frame.

3. The page frame offset determined in the previous step is negated.

4. For all processors but the KA620, the virtual address of the base
of the SO page table is obtained from the KER$GA_SPT_BASE
field in the kernel data block. This value was calculated during
the mapping of the SO page table. In Figure 3—4, the SPT base is
800035C007¢. On the KA620 processor, the physical address of the
S0 page table is obtained instead from KER$GA_SPT_PHYSICAL.

5. The negated page frame offset of the kernel is subtracted from
the base address of the SPT to yield the required base virtual
address of the temporary PO page table. In Figure 3-5, this value
is 80035B4C1g, 45 longwords — POPTEs — before the base of the
SPT. On the KA620 processor, the offset is subtracted from the
physical base of the SPT to yield the physical address of the P0
page table.

This is the critical step: when the VPN derived from the address
of the JMP instruction is added to the base address of the PO page
table during address translation, the resulting POPTE is also the
SPTE holding the PFN of the page frame that contains the JMP
instruction.

6. The virtual address of the base of the temporary POPT is written
to the POBR for use during address translation. On the KA620
processor, the physical address of the POPT is written to POBR.

7. The kernel’s page offset is added to the present physical size of the
system to become the value of the POLR.

8. The address translation buffer is invalidated.

The next three instructions in the sequence merit closer attention.
Each instruction executes in a different address space — physical, P0,
and SO (the list numbers correspond to the numbers shown in Figures
3—4 and 3-5):

@ The first of the three instructions is accessed by its physical address
and enables mapping by writing a 1 to the Map Enable privileged
register:

3-26 System Bootstrap, Kernel Initialization, and Application Start-Up

MTPR #l,#PR$_MAPEN

After the execution of this instruction, all address references are
translated. The program counter now contains the physical address
of the next instruction (JMP) — in Figure 3-5, 6024, namely, byte
258 on page frame 54. That physical address is now interpreted as
a PO address when the processor fetches that instruction.

® The next instruction —

JMP @#MAPPED EXECUTION

— is accessed through the PO virtual address in the program
counter. The address is translated by extracting the VPN — in the
figure, 54 — from the PO address and using it as a longword index
from the POBR. This offset yields the system virtual address of the
POPTE that maps the page frame containing the JMP instruction.
The temporary PO page table has been superimposed on the S0
page table so that this POPTE corresponds to the SPTE that maps
page frame 54. When the byte offset is added back in, the physical
address of the JMP instruction — 6021 — results.

The effect of the JMP instruction is to set the program counter
with the virtual address of the next instruction, at the MAPPED_
EXECUTION label. That address will be the S0 virtual address for
that label, which was calculated when the kernel image was linked.

© The instruction at the MAPPED_EXECUTION label —

GETCPU RO

— is executed in system address space (and has no connection with
enabling memory management). From this point on, system initial-
ization continues with memory management enabled, executing in
system address space.

3.2.4 Mapped Initialization

With mapping enabled, the kernel can reference system data struc-
tures, such as the RPB, through their virtual addresses. For example,
cells in the data block can now be referenced directly instead of through
a displacement from the physical base of the data block.

The kernel takes the following steps to complete initialization:

1. Execution is switched to the interrupt stack. See Section 3.2.4.1.

System Bootstrap, Kernel Initialization, and Application Start-Up 3-27

2. The machine-check handler data block or blocks are initialized. See
Section 3.2.4.2.

3. The SCB is initialized. See Section 3.2.4.3.
4. TI/O address space is configured. See Section 3.2.4.4.

5. The processor-specific registers and console registers are initial-
ized, and data used by the console subsystem is mapped. See
Section 3.2.4.5.

6. The remaining system data structures are created, initialized, and
mapped. See Section 3.2.4.6.

7. Scheduler and job queues are initialized. See Section 3.2.4.7.

The start-up job is created. See Section 3.2.4.8.

9. The system announcement string is displayed. See Section 3.2.4.9.
10. The system interval time is started. See Section 3.2.4.10.

11. The system start-up is logged in the system error log file. See
Section 3.2.4.11.

12. Job scheduling begins, and initialization is complete. See
Section 3.2.4.12.

®

3.2.4.1 Step 1 — Switch Execution to the Interrupt Stack

The stack pointer (SP) is loaded with the base address of the interrupt
stack for the primary processor. Execution continues on the inter-
rupt stack until the start-up job is created, when execution switches
temporarily to the kernel stack.

3.2.4.2 Step 2 — Initialize the Machine-Check Data Block

For each processor in the system, the kernel calls the processor-specific
subroutine KER$INIT MACHINECHK to initialize the processor’s
machine-check handler data block.

3.2.4.3 Step 3 — Initialize the SCB

Until this point, the SCB has contained physical-address-based vectors
to the boot-time exception and interrupt handlers. The SCB is now
initialized with its run-time vectors. The VAXELN SCB structure is
actually two components: the SCB itself and the unexpected-event
dispatch block, which supports the handling of unexpected interrupts
and exceptions.

3-28 System Bootstrap, Kernel Initialization, and Application Start-Up

The SCB and unexpected-event dispatch block are initialized in four
passes:

1. Each vector in the SCB is filled with the address of its correspond-
ing entry in the unexpected-event block.

2. The architecturally defined and processor-specific portions of the
SCB are filled in with the addresses of the appropriate interrupt
and exception handlers. (The general layout of the SCB is described
in Chapter 6, Condition Handling.) The architecturally defined
vectors are copied from a table at the start of module INITIAL.

Figure 3—6 shows the relationship between the SCB and the
unexpected-event dispatch block. Any SCB vectors not touched

on this second pass continue to point indirectly to the unexpected-
event handler, KER$UNXINTEXC, in module EXCEPTION.

Each of these unused vectors in fact contains the address of the
corresponding entry in the unexpected-event dispatch block (that
is, the nth vector points to the nth longword in the unexpected-
event block). That unexpected-event entry contains a Branch to
Subroutine with Word Displacement (BSBW) instruction and the
displacement to the six-byte unexpected-interrupt dispatcher, which
starts at the third byte of the block.

When an unexpected interrupt or exception occurs, the SCB vector
it uses tranfers control to the BSBW instruction in its correspond-
ing entry in the unexpected-event dispatch block. The BSBW
pushes the PC (the address of the byte following the displacement
byte) onto the stack and transfers control to the unexpected-event
dispatcher at the top of the block. The dispatcher then executes

a JMP to the unexpected-event handler in module EXCEPTION,
which uses the PC on the stack to determine which dispatch entry
executed the BSBW. The offset of this entry in the block corre-
sponds to the SCB vector that received the unexpected interrupt or
exception. This result is printed at the top of the stack dump when
the handier declares a system fatal bugcheck to halt the system.

3. Processor-specific SCB vectors are initialized. The address of a ta-
ble containing processor-specific vectors is returned by the internal
subroutine KER$SCB_FIXUPS.

System Bootstrap, Kernel Initialization, and Application Start-Up 3-29

Figure 3-6: Relationship Between the SCB and the Unexpected-Event Dispatch

Block

Unexpected
interrupts or
exceptions
transfer
control

to entries in
the dispatch
block.

— Address of 1st Entry in Dispatch Block

Machine-Check Vector (always used)

Address of 3rd Entry in Dispatch Block

System
Address of Interrupt or Exception Handler [<— This > Control
vector Block
Address of 5th Entry in Dispatch Block is in (n pages)
use.
Address of nth Entry in Dispatch Block)
2
> BSBB 108 —>10$: JMP @+ Module EXCEPTION
KERSUNXINTEXC::
KER$UNXINTEXC —»1 Find Vector
Bugcheck
> BSBW 10$- l€— PC of this
byte is
Unexpected-Event
ushed .
BSBW 10$ gnto the > ?’:s;:gtzz)mock
stack by
BSBW 108 BSBW
BSBW 108
J MLO-003218

4. The addresses of the string and floating-point instruction emulator
routines are loaded into the appropriate SCB vectors if emulation
was requested.

3.2.4.4 Step 4 — Configure /O Address Space

The kernel configures I/O address space by calling the processor-specific
subroutine KER$CONFIGURE_IOSPACE, which resides in the ap-
propriate INITnnn module for the target processor. For busless and
Q-bus-based processors, the subroutine simply returns. On the VAX
62nn and VAXBI-based processors, the subroutine probes the I/O bus
for I/0 adapters, initializes them, and saves information about their
configuration to be used during later operations.

3-30 System Bootstrap, Kernel Initialization, and Application Start-Up

3.2.4.5 Step 5 — Initialize Processor-Specific and Console Registers

The kernel initializes the processor-specific registers that were
mapped earlier by calling the processor-specific subroutine KERSINIT_
PROCREG. The kernel then calls KERSCONIO_INITIAL again to up-
date the value of KER$GA_CONIO_CODE with the virtual address

of the console I/0O image, replacing the physical address used to call
console I/0 procedures during unmapped initialization. This call to
KER$CONIO_INITIAL also results in the mapping of the console
registers and data.

3.24.6 Step 6 — Create and Map Remaining System Structures

At this point, the kernel creates and maps the remaining system
data structures whose sizes were calculated before the creation of the
system page table. To allocate memory and map the structures, the
kernel calls the local subroutine GET_FRAME for each page required.
GET_FRAME in turn calls the internal subroutine KER$ALLOCATE_
FRAME and then maps the returned page frame number into the
system page table, advancing the current system virtual and SPTE
addresses as each page is mapped.

When I/0 address space is mapped, however, no page frames are
allocated; rather, the address space is mapped to the appropriate
processor-specific physical addresses. In these instances, the local
subroutine KER$FILL_SPTE is called.

The lower half of Figure 3-2, below the system page table, shows the
elements mapped at this stage of initialization. The kernel creates and
maps the following system data structures:

¢ The crash-restart log. One log area is created and mapped for each
processor in the system, and the base address of each log is written
to the array located at KER$GA_CRASHLOG (indexed by processor
number).

¢ The pool of error-log buffers. If error logging has been enabled
(KER$GB_ERRLOG_ENABLE is 1), the kernel creates and maps
the number of error message buffers specified as KER§GW_EMB_
COUNT. This process is described in Section 7.1.2.1.1, Error
Message Buffers.

¢ The system dynamic pool. The system pool is allocated and mapped
as described in Section 9.4.1, Initializing System Pool.

System Bootstrap, Kernel Initialization, and Application Start-Up 3-31

* The PO and P1 page table slots. Physical memory is allocated to
hold the PO and P1 page table slot bitmaps, but no page frames
are allocated for the page tables themselves. Instead, physical
memory is allocated for page tables at the time of job and process
creation, as described in Section 9.1.2.1.2, PO Page Tables, and
Section 9.1.2.1.3, P1 Page Tables. The slot bitmap descriptors
located at KER$GR_PO_SLOT_BITMAP and KER$GR_P1_SLOT_
BITMAP are also initialized, and the SPTEs that map the area
reserved for the page table slots are cleared. The virtual addresses
of the PO and P1 slot areas become the values of KER$GA_P0_
SLOT_BASE and KER$GA_P1_SLOT _BASE, respectively.

* The port address table. The port address table, whose size in
longword table entries is indicated by KER§GW_PORT _SIZE, is
initialized as described in Section 10.2.1.2, Port Address Table.
The current virtual address becomes the value of KER$GA_PORT_
BASE.

* The local name table. The local name table, whose size in quadword
entries is indicated by the global parameter KER$GW_NAME _
SIZE, is initialized as described in Section B.12. The current
virtual address is used to initialize the table descriptor located
at KER$GR_LOCAL_TABLE. The NTB$A_ADDRESS] field in the
descriptor contains the address of the first listhead, and NTB$L_
LENGTH]1 contains the number of listheads in the table (128).

¢ The local debugger data area. If the local debugger component is
present, the kernel maps and zeros the number of page frames
specified by KER$GA_KERNEL_DEBUG_DATA to support the de-
bugger’s read/write data. The current virtual address then becomes
the new value for KER$GA_KERNEL_DEBUG_DATA.

The kernel next calls the local debugger’s initialization code as

a subroutine at the address specified by KER$GA_KERNEL_
DEBUG_CODE. If the user has requested the initial kernel break-
point (RPB$V_INIBPT is set), then the subroutine KER$KERNEL_
BREAK is called to give the local debugger control in a kernel
debugging session.

® 1/0O space. At this point, the kernel displays the system startup
message: “%VAXELN system initializing.”

Next, the kernel calls the processor-specific subroutine KER$MAP_
IOSPACE to map the I/O address space. If the target processor has
one or more hardware adapters, the subroutine walks the list of
system configuration records (SCRs), whose address is calculated
using the offset value in KER$GA_DEVICE_LIST, and analyzes
them to determine what 1/O adapters have been configured for the

3-32 System Bootstrap, Kernel Initialization, and Application Start-Up

system. For each adapter the subroutine encounters, an adapter
control block (ADP) is created, initialized, and inserted into the
adapter list located at KER$GA_ADAPTER_LIST. The structure of
the ADP is described in Table B-2.

The number of virtual pages that are mapped in the system page
table depends on the processor and its adapter configuration. For
example, on the Q22-bus-based MicroVAX II, the following elements
are mapped:

* Q22-bus I/O space
* Q22-bus map registers
* The allocation bitmap for map registers

On a VAXBI-based processor, by contrast, VAXBI nodespace is
mapped, and, if a UNIBUS adapter resides on the VAXBI bus, the
following UNIBUS elements are mapped as well:

e TUNIBUS I/O space
¢ UNIBUS adapter space
¢ The allocation bitmap for UNIBUS map registers

No physical memory is allocated during this mapping, and no
bits are cleared in the PFN bitmap (physical memory is allocated
for any bitmaps that are created). These 1/0 pages are simply
mapped into virtual address space using their bus-specific physical
addresses. For example, on many VAX processors, I/0 space is
mapped into system space at physical address 20000000;¢ or above.

* The communication region. Based on the value of KER$GW_IO_
SIZE, the kernel computes the number of pages required to hold
the communication region bitmap. It then allocates and maps
those page frames and initializes the bitmap, located at KER$GR_
REGION_BITMAP (see Section 9.3.1, Allocating System Virtual
Memory). The current virtual address then becomes the value
KER$GA_REGION_BASE. Finally, the SPTEs that will map the
communication region are cleared to show that no pages are yet
allocated there. These are the last entries in the system page table
to be initialized.

At this point, system virtual memory has been completely mapped.

System Bootstrap, Kernel Initialization, and Application Start-Up 3-33

3.2.4.7 Step 7 — Initialize Scheduler and Job Queues

The queue of ready jobs, located at KER$AQ READY_HEAD, contains
a job listhead for each possible job priority. The kernel initializes the
queue listheads by writing the address of each quadword listhead to its
forward and backward link fields.

The kernel also initializes the scheduler’s mask of idle processors,
located at KER$GW_CPU_IDLE, by setting the bit that indicates that
the primary processor is idle. This means that the start-up job will be
scheduled to run on the primary processor in the system.

Finally, the kernel initializes the listheads for the queue of jobs in the
system and the list of area control blocks.

3.2.4.8 Step 8 — Create the Start-Up Job

The start-up job is the first job to run in any VAXELN system. It
scans the program list created by the System Builder and creates the
jobs in the list that have the Init required and Run attributes. The
execution of the start-up job is described in Section 3.3.

To create the start-up job, the kernel calls the KER$CREATE_JOB
procedure. The call is vectored through the change-mode dispatcher
(described in Chapter 8), which executes the CHMK instruction to
transfer control to the procedure code. Since executing CHMK on the
interrupt stack is illegal, the kernel must first switch execution to
the kernel stack. Because the kernel executes a Save Process Context
(SVPCTX) instruction to return to the interrupt stack, it must create
a temporary hardware process context block. The kernel also takes
steps to prevent the start-up job from executing immediately after its
creation.

The start-up job is created as follows:

1. A temporary process hardware context block (PTX) is allocated
on the stack. The minimum number of fields is initialized in the
PTX. The address of this PTX is written to the PCBB (hardware
context base) internal register. The PTX block is required so that
the kernel can later execute the SVPCTX instruction to return
execution to the interrupt stack.

2. IPL is lowered from 31 to 3 IPL$K_DISABLE_SWITCH).

3-34 System Bootstrap, Kernel Initialization, and Application Start-Up

A pool block is allocated to act as a dummy, and the minimum num-
ber of fields is initialized in the JCB. The JCB address is written
to the KER$AA_CURRENT _JCB array entry for the current pro-
cessor. This prevents the scheduler from allowing the start-up job
to run until the kernel removes the dummy JCB from KER$AA_
CURRENT_JCB and invokes the scheduler.

The current PSL is pushed onto the stack, and the high byte is
zeroed, clearing the interrupt stack bit (IS) and setting the current
mode field to kernel. The kernel then pushes the PC of the next
instruction onto the stack by calling a subroutine that executes
only an Return from Exception or Interrupt (REI) instruction. The
execution of the REI then causes the PC and PSL on the stack to
become current, effectively switching execution to the kernel stack
at IPL 3, beginning at the instruction following the subroutine call.
The kernel stack pointer is then initialized with the address of the
interrupt stack, so that same stack as before is used. The kernel is
now executing in kernel mode to create the start-up job.

The address of a prepared program descriptor, located at KER$GR_
STARTUP (in module STARTUP), is written to the data cell
KER$GA_PROGRAM_LIST. This makes the start-up job’s descrip-
tor the only one in the program list, where KER$CREATE_JOB
will find it. The program descriptor specifies that the start-up job
will run in kernel mode with job and master process priorities of 0.

The arguments to KER$CREATE_JOB are pushed onto the stack.
Arguments for the exit port, a null program name, the job port,
and the return status are specified. The null program name in the

argument list will match the name in the program descriptor when
KER$CREATE_JOB searches the list for the specified program.

The KER$CREATE_JOB procedure is called with the CALLS
instruction and the procedure entry point KER$STARTUP. The
procedure will attempt to create the start-up job and return a
completion status. KER§CREATE_JOB is described in Chapter 4.

The status returned from KER$CREATE_JOB is examined. If it
indicates failure, a fatal bugcheck is raised to halt the system.
Otherwise, the start-up job has been created and awaits execution
in the ready job queue.

The original values for KER$GA_PROGRAM_LIST and KER$AA _
CURRENT_JCB are restored, and the dummy JCB pool block is
returned to the pool. Removing the JCB address from KER$AA _
CURRENT_JCB allows the start-up job to run once the scheduler
is called.

System Bootstrap, Kernel Initialization, and Application Start-Up 3-35

10. The SVPCTX instruction is executed to return execution to the
interrupt stack for the completion of initialization. The temporary
PTX, which contains the unneeded process context information, is
cleared from the stack.

3.24.9 Step 9 — Announce the System

The kernel calls the generic interface to the console I/O subsystem to
display the VAXELN announcement string — for example, “VAXELN
V4.0 QBUS” — on the console terminal.

3.24.10 Step 10 — Start the Interval Clock

The kernel initializes the timer queue listhead located at KER$GQ_
TIME_QUEUE. It then sets the processor’s interval clock to interrupt
at the interval specified by KER$GL_TIME_INTERVAL and starts the
clock by writing to the PR$_ICCS register. Section 5.3.1 describes the
function of the interval clock in VAXELN timekeeping.

3.2.4.11 Step 11 — Log the System Start-Up

The kernel calls the internal subroutine KER$COLDSTART. If error
logging is enabled for the system, a system start-up entry is posted to
the system’s error log file. At this time, the processor’s cold and warm
start flags are also cleared.

3.2.4.12 Step 12 — Begin Job Scheduling

The kernel completes its initialization by setting IPL to 8 (IPL$K_
SYNCHRONIZE) and invoking the scheduler by transferring control
to internal subroutine KER$SCHEDULE_JOB. The scheduling pass
this precipitates allows the start-up job to run. Control will not return
to module INITIAL. The execution of the start-up job is described in
Section 3.3.

3-36 System Bootstrap, Kernel Initialization, and Application Start-Up

3.3 Application Start-Up: The Start-Up Job

The VAXELN initialization sequence ends by invoking the kernel’s
scheduler. The scheduler finds only one job to be scheduled: the start-
up job. The start-up job (in module STARTUP) performs the following
tasks:

Begins the execution of applications by creating jobs with the Init
required and Run characteristics

Configures and boots auxiliary processors in a tightly coupled
symmetric multiprocessing system

Initializes the bus-based message port in a closely coupled symmet-
ric multiprocessing system

The first item, since it concerns the start-up of applications on every
VAXELN system, is the focus of Section 3.3.1. Section 3.3.2 describes a
related kernel procedure, KER$INITIALIZATION_DONE, which allows
initialization jobs to inform the start-up job that their initialization is
complete.

3.3.1 Creating Jobs Sequentially

When the System Builder created the program list, it arranged the
system’s program descriptors in the following order:

1.

3.

Programs that require initialization at system start-up. These
are the programs for which the Init required characteristic has
been selected in their program descriptions (that is, the PRG$V_
SEQ_INITIAL bit is set in the PRG$B_OPTION_FLAGS field).
These initialization jobs are sorted by job priority, with the highest
priority job first in the list.

Programs that must be created at system start-up. These are the
programs for which the Run characteristic has been selected in
their program descriptions (that is, the PRG$V_AUTO_START bit

is set in the PRG$B_OPTION_FLAGS field). These jobs are also
placed in priority order.

All other programs. Programs that require neither initialization
nor automatic start-up appear at the end of the program list in the
order they were processed by the System Builder.

System Bootstrap, Kernel Initialization, and Application Start-Up 3-37

The start-up job runs in kernel mode at IPL 0, with job and master
process priorities of 0. It allows lower priority initialization jobs to run
by blocking its own execution. The start-up job’s task is to walk the
program list and perform the following operations:

1. Create all jobs that require initialization. After each job is created,
the start-up job waits until the job calls KERSINITIALIZATION_
DONE or exits.

2. Create all jobs that require automatic start-up. These jobs cannot
run until the start-up job exits.

3. Exit to allow normal job scheduling to occur.

To pass the necessary arguments to KERSCREATE_JOB, the start-up
job reserves the required space on the stack, pushes its arguments
there, and calls KER$CREATE_JOB, specifying the address of the

top of the stack region as the argument table operand for the CALLG
instruction. If a failure status is returned by any procedure call within
the start-up job, IPL is raised to 2 (IPL$K_AST LEVEL), and a system
fatal bugcheck is declared to cause the orderly shutdown of the system.

Communication between the start-up job and initialization jobs is
through the start-up job’s job port. The start-up job first obtains the
identifier of this port by calling KER$JOB_PORT, obtains the address
of that port by calling the KER$TRANSLATE_OBJECT subroutine,
and stores that address in the global cell KER$GA_STARTUP_PORT.
The start-up job blocks its execution — allowing an initialization job
to run — by waiting on this port for a message. The message signifies
that one of two possible events has occurred:

* The job has completed its initialization and called
KERS$INITIALIZATION_DONE. This message comes directly from
KERS$INITIALIZATION_DONE, which has obtained the identifier
for the start-up job’s port from KER$GA_STARTUP_PORT.

¢ The job has exited. This message comes from KER$CREATE_JOB
(through a call to KER$DELETE), which obtains the port identifier
as the exit port argument passed to it by the start-up job.

Before the start-up job exits, it removes the address of its job port from

KER$GA_STARTUP_PORT. This will signify, to subsequent calls to
KERS$INITIALIZATION_DONE, that the start-up job no longer exists.

3-38 System Bootstrap, Kernel Initialization, and Application Start-Up

After obtaining the value of its job port, the start-up job next walks the
program list from beginning to end looking for program descriptors that
have both the PRG$V_SEQ_INITIAL and PRG$V_AUTO_START bits
set in the PRG$B_OPTION_FLAGS field. Notice that a program must
have both the Run and Init required characteristics before it can ac-
tually run. If such a job is found, control branches to a local subroutine
to create the job and allow it to run. The search for initialization jobs
completes at the end of the program list.

Next comes a second pass through the program list. This time, the
start-up job is looking for descriptors with the PRG$V_AUTO_START
bit set and the PRG$V_SEQ_INITIAL bit clear. If it finds such a job,
control again transfers to the local subroutine to create the job. This
time, however, the newly created job is not allowed to run. The search
for auto-start jobs completes at the end of the program list.

The local subroutine creates initialization jobs and auto-start jobs as
follows:

1. The CALLG argument table for KER$CREATE_JOB is built on the
stack as follows:

a. The job parameters in the program descriptor are extracted
from their parameter blocks and pushed onto the stack as
string descriptors, as KER$CREATE_JOB expects them.

b. If this is an initialization job, the address of the start-up
job’s port is pushed onto the stack as the exit port argument.
Otherwise, 0 is pushed as a null argument for auto-start jobs,
since these jobs do not communicate with the start-up job.

c¢. The program name and size are extracted from the program de-
scriptor. They are then fashioned into a string descriptor, whose
address is pushed onto the stack as expected by KER$CREATE_
JOB.

d. The address for the status value is pushed onto the stack.
e. The final argument count is pushed onto the stack.

2. The KER$CREATE_JOB procedure is called. If a success status is
returned, execution continues. Otherwise, a system fatal bugcheck
occurs.

3. If an auto-start job was created, the subroutine returns. The auto-
start job will not be able to run until the start-up job exits.

System Bootstrap, Kernel Initialization, and Application Start-Up 3-39

The identifier for the job port is pushed onto the stack, and
KER$WAIT_ANY is called. By explicitly blocking its own execu-
tion, the start-up job allows the initialization job to run until it
completes or until it calls KER$INITIALIZATION_DONE and,
possibly, blocks itself. The start-up job will not run again until a
message arrives on its job port.

The KER$RECEIVE procedure is called to receive the message.
The reply port argument is included so that the message’s sender
can be identified.

If the identifier of the reply port is the same as the initialization
job just created, the job initialization is done, and the subrou-
tine exits. The message arrived because the job exited or called
KER$INITIALIZATION_DONE.

If the port identifiers do not match, the message signifies the
termination of an earlier initialization job that did not call
KER$INITIALIZATION_DONE. Therefore, the start-up job waits
again on its job port for a message from the job it just created. No
new jobs will be created until such a message arrives.

3.3.2 Job Initialization and KERSINITIALIZATION_DONE

When a job completes its initialization, it can call the
KERS$INITIALIZATION_DONE procedure to inform the start-up job
and allow other jobs to be created. KER$INITIALIZATION_DONE
sends a message to the start-up job, which is waiting on its job port.
When the message arrives, the start-up job unblocks and continues its
search of the program list for other initialization jobs.

KERSINITIALIZATION_DONE executes as follows:

1.
2.

3.

The address of the caller’s JCB is obtained.

The address of the caller’s program descriptor is obtained from
JCB$A_PROGRAM.

The PRG$V_SEQ_INITIAL bit in the PRG$B_OPTION_FLAGS
field is tested. If it is clear, the calling job does not have the
Init required attribute, and the failure status KER$_NO_
INITIALIZATION is returned to the caller.

The value of KER$GA_STARTUP_PORT is obtained. If that value
is not an SO virtual address — the address of the start-up job’s
job port — KER$_SUCCESS is returned to the caller. This means
that KER$INITIALIZATION_DONE was called after application
start-up was completed and therefore has no function.

340 System Bootstrap, Kernel Initialization, and Application Start-Up

The KER$CREATE_MESSAGE procedure is called to create a
zero-length message. If the procedure fails, that failure status is
returned to the caller.

The KER$SEND procedure is called to send the null message to the
start-up job’s port. The arrival of this message unblocks the start-
up job. If the send procedure fails, that failure status is returned to
the caller.

System Bootstrap, Kernel Initialization, and Application Start-Up 3—41

Chapter 4

Job and Process Creation and
Deletion

This chapter describes the creation of VAXELN jobs and processes, the
environment established for program execution when a job is created,
and the deletion of jobs and processes.

For each executable program image included in a VAXELN system
image at build time or loaded dynamically at run time, one or more
jobs can be created. A job represents the activation of a program in the
system. Each job is logically independent of other jobs (including other
activations of the same program image) and executes concurrently
with other jobs in the system. This is the VAXELN multiprogramming
environment.

If the program is marked with the Run characteristic on the Program
Description Menu, the kernel creates a job to run the program at
system start-up; otherwise, a job is created by an explicit run-time pro-
cedure call from a running program or interactive utility (the debugger
or the VAXELN Command Language).

Creating a VAXELN job establishes an environment for execution of a
program image by one or more processes. At job creation, the kernel
creates a master process to execute the program’s main code, beginning
at its transfer address. Subsequently, subprocesses can be created

as needed to execute portions of the program code (process blocks or
routines, compiled as VAX procedures). The job’s master process and
subprocesses concurrently execute the same or different portions of a
program image, with each process representing a logically independent
thread of execution. This is the VAXELN multitasking environment.

Job and Process Creation and Deletion 4-1

During job creation, the kernel creates a framework of interconnected
control blocks and other data structures that represent the state of the
job and its processes at any given time. Among the significant struc-
tures that support program execution are the job control block (JCB),
representing jobwide elements of process software context, shared
among all processes in a job; the process control block (PCB), repre-
senting process-specific elements of process software context, private
to a process; the process hardware context block (PTX), representing
process hardware context; and the page tables that map job and pro-
cess components to the program (P0) and control (P1) regions of process
address space. These structures are described in Section 4.2. The ker-
nel procedure that creates a job, KERSCREATE_JOB, is described in
Section 4.4.

Creating a process establishes an independent thread of program
execution within the system. A VAXELN process is a VAX process, as
defined by the VAX architecture, with the added characteristic that it
shares the PO region of virtual address space, where the program image
is mapped, with all other processes executing in the job.

During process creation, the kernel creates process-specific control
blocks and other data structures that are added to the job’s framework
of data structures. These structures include a PCB, a PTX, and a
page table mapping the new process’s components and resources to its
private P1 address space.

A subprocess is created with a call to the kernel procedure KER$CREATE_
PROCESS, described in Section 4.5. The master process is created
implicitly when a job is created; see Section 4.4.

Deleting a process deactivates an execution thread within the sys-
tem. If the deleted process is the master process, the entire job is
terminated, its subprocesses are deleted, and its system resources are
deallocated. If the process’s termination began with an implicit exit
(the process reached the end of its code) or with an explicit call to
KER$EXIT from program code, additional orderly cleanup is performed
before the process is deleted.

The procedure that deletes object-related kernel resources, KER$DELETE,
is described in Chapter 10. Section 4.6 describes how KER$DELETE
deletes processes; it also describes the kernel procedure that provides
orderly process and job termination, KER$EXIT.

4-2 Job and Process Creation and Deletion

4.1 Process Execution Environment

The environment in which a process executes is defined by the states
and contents of its supporting data structures, its address space, and
its registers. Figure 4—1 summarizes this context for a process’s execu-
tion.

The control structures established by the kernel at job and process
creation reside in the system (S0) region of virtual address space,
where they can be modified directly only by the kernel (which manages
them for the user) or by a process executing in kernel access mode. The
control structures occupy system pool blocks, page table slots, or pages
allocated from the system’s communication region.

Job components, including program code and global data, are mapped
into the PO region of process address space, for jobwide access. Process
components, including the process stacks, are mapped into the P1
region of process address space, for private access. Job and process re-
sources can reside in process address space — for example, dynamically
allocated PO or P1 virtual memory — or in system address space — for
example, kernel objects or dynamically allocated SO virtual memory.

When a process is selected by the kernel’s scheduler to run, a LDPCTX
(Load Process Context) instruction is executed to load the process
hardware context, as defined by the process’s PTX, into the processor
registers that support process execution. Among those registers are the
PO base register (POBR), the PO length register (POLR), the P1 base
register (P1BR), and the P1 length register (P1LR), which receive the
base addresses and effective lengths of the job’s PO page table and the
process’s P1 page table. These registers define the executing process’s
PO and P1 virtual address space, and are accessed to translate virtual
addresses referenced by the program.

4.2 Job and Process Data Structures

At job creation, the kernel creates a framework of interconnected data
structures to represent the components, resources, attributes, and
state of the job and its processes at any given time. For each process
subsequently created by the job, the kernel adds data structures specific
to that process to the framework.

Job and Process Creation and Deletion 4-3

Figure 4-1:

Execution Context of a Process

Processor Reglsters

Process Virtual Memory

General Registers:

- Registers 0 through 11
- Argument Pointer

- Frame Pointer

- Stack Pointer

- Program Counter

Processor Status Longword

Jobwide:

- No-Access Page

- Program Image

- Writeable Shareable Images
- Job Context Page

- Job Dynamic Memory

- Heap Data

- Message Buffers

:00000000

Stack Pointer Registers:
- Kernel Stack Pointer

- User Stack Pointer

- Interrupt Stack Pointer

Direction
of Growth

Page Table Registers:

- PO Base Register

- PO Length Register

- P1 Base Register

- P1 Length Register

- System Base Register

- System Length Register

- Process Control Block Base

Unmapped Portion of
PO Space
Unmapped Portion of
P1 Space

< PO Virtual Size Limit
I

i

': :40000000

)

Direction
of Growth

< P1 Virtual Size Limit

AST Level Register

Process-Specific:

- User Stack (user-mode)

- No-Access Page (user-mode)
- Kernel Stack

- Process Context Data

Systemwide (abbreviated):

- VAXELN System Image

- System Control Block

- Interrupt Stack (per CPU)

- System Page Table

- System Dynamic Pool

- PO and P1 Page Table Slots
- Communication Region

:80000000

Job/Process
Control Structures

Unmapped Portion of
S0 Space

b Maximum SO Size

|
‘BFFFFFFC

MLO-003210

The job data structures established at job creation include the follow-

ing:

¢ Job control block (JCB). This structure represents the attributes
and state of the job and contains pointers to its components and
resources. The JCB also is linked into the kernel’s queue of all
jobs in the system and, if it is in the ready state, into the ready

4-4 Job and Process Creation and Deletion

job scheduling queue for its priority. The JCB is described in
Section 4.2.1.

Job parameter blocks (JPBs). These structures store caller-specified
job arguments during the first phase of job creation; ultimately job
arguments are copied to PO virtual memory, where all the job’s pro-
cesses can access them. JPB format is described in Section 4.4.1.2.

Job object tables. These structures comprise a two-tiered arrange-
ment of address tables — an object base table and one or more
object pointer tables — used to create, locate, and delete dynami-
cally created kernel objects, representing job resources. Job object
tables are described in detail in Chapter 10.

PO page table (POPT) and related memory-management structures
such as allocation bitmaps and page table entries (PTEs). In con-
junction with the processor page table registers (when the job is
running) or the page table fields of the job’s PTXs (when the job
is not running), the POPT defines and maps the PO virtual mem-
ory for the job. Page tables and related structures are described
in Chapter 9; the job components and resources mapped into PO
virtual address space are described in Section 4.3.1.

Master process data structures. These process structures are pri-
vate to the master process.

The process data structures established at process creation (for master
and subprocesses alike) include the following:

Process control block (PCB). This structure represents the at-
tributes and state of the process and contains pointers to its com-
ponents and resources. The PCB is entered into the job’s object
database as the object representing the process. The PCB also is
linked into the job’s queue of all its processes and, if it is in the
ready state, into the ready process scheduling queue for its priority.
The PCB is described in Section 4.2.2.

Process hardware context block (PTX). This structure represents
the process’s hardware context, consisting in part of the saved
values of the internal registers that support process execution.

A LDPCTX instruction loads these register values from the PTX
when a process is scheduled to run, and a SVPCTX (Save Process
Context) instruction returns these values to the PTX when the
process is removed from execution. The PTX is described in
Section 4.2.3.

Wait control blocks (WCBs). These structures allow a process to
wait for kernel objects. WCBs are described in Chapter 11.

Job and Process Creation and Deletion 4-5

* Process argument block. This structure is a standard VAX argu-
ment list containing the arguments specified when the process was
created.

* P1 page table (P1PT) and related memory management structures
such as allocation bitmaps and page table entries (PTEs). In con-
junction with the processor page table registers (when the process
is running) or the page table fields of the PTX (when the process
is not running), the P1PT defines and maps a private P1 virtual
address space for the process. A unique P1PT is created for each
process in a job. Process components and resources mapped into P1
memory are described in Section 4.3.2.

4.2.1 Job Control Block

A job control block (JCB) is created by the KERSCREATE_JOB kernel
procedure for each job created in a VAXELN system. The JCB repre-
sents and associates the attributes, state, resources, and components of
a job and its family of processes. As described in Section 4.4, the JCB
is created at the beginning of two pages allocated for job and process
control blocks in the communication region of SO address space. The
following information is maintained in its fields:

* Links into the job scheduling queue for its job priority and into a
linked list of all the system’s jobs

¢ Pointers to the job’s process queues, port queue, and object tables

¢ Pointers to the program descriptor for the program the job was
created to execute, and to a list of program arguments

* Pointer to the job’s PO page table, and the size in pages that the
page table maps

Figure 4-2 shows the structure of the JCB, and Table 4—1 describes its
fields.

4-6 Job and Process Creation and Deletion

Figure 4-2: Structure of a Job Control Block

JCBSA_SCHEDULE_FLINK

JCBSA_SCHEDULE_BLINK

JCBSB_STATE JCBSB_PRIORITY JCBSB_READY_PRIORITY JCB$B_TYPE

JCBSA_CURRENT_PCB

JCBSA_NEXT_PCB

JCB$SA_PROCESS_QUEUES

JCBSA_PROCESS_FLINK

JCBSA_PROCESS_BLINK

JCBSA_JOB_FLINK

JCB$A_JOB_BLINK

JCBSA_PORT_FLINK

JCB$SA_PORT_BLINK

JCBSW_READY_SUMMARY JCBSW_DISABLE

JCBSW_OBJECT_FREE JCBSW_CPU_MASK

JCBSA_OBJECT_TABLE

JCB$SA_PROGRAM

JCBSL_RW_DATA_PTE

JCBSL_MESSAGE_PTE

JCBSA_PARAMETER_LIST

JCBSA_INITIAL_STACK

JCBSW_PROCESS_GENERATION JCBSW_GENERATION

JCBSL_PORT_ID

JCBSA_PO_BASE

JCBSL_PO_LIMIT

JCBSA_PO_BITMAP (12 bytes)

JCB$B_EXIT_PORT_ID (16 bytes)

JCBSW_CONTEXT_COUNT] JCBSB_CPU_NUMBER I JCBSB_MODE

MLO-003220

Job and Process Creation and Deletion 4-7

Table 4-1: Job Control Block Fields

Field

Meaning

JCB$A_SCHEDULE_FLINK
JCB$A_SCHEDULE_BLINK

JCB$B_TYPE
JCB$B_READY_PRIORITY

JCB$B_PRIORITY
JCB$B_STATE

JCB$A_CURRENT_PCB

JCB$A_NEXT_PCB

JCB$A_PROCESS_QUEUES

JCB$A_PROCESS_FLINK
JCB$A_PROCESS_BLINK

JCB$A_JOB_FLINK
JCB$A_JOB_BLINK

JCB$A_PORT_FLINK
JCB$A_PORT_BLINK

The forward and backward links to next and previous jobs
in the ready queue for this job’s priority.

The structure type: OBJ$K_JOB.

The priority of the highest priority ready process in the
job.

The job’s priority: 0 (highest) to 31 (lowest).

The job’s state: JCB$K_READY (0), JCB$K_RUNNING
(1), or JCBSK_WAITING (2).

The address of the PCB of the job’s current process —
the process placed in the running state for this job. The
process is actually running only if the job is running.

The address of the PCB of a process that has been selected
to become the running process for this job, preempting the
current process; if an address is present (a nonzero value),
this field indicates that a rescheduling is pending.

The address of a set of 16 ready process queues, ordered
by process priority (0-15), containing the PCBs of all the
job’s ready processes; this address is indexed to insert or
remove a process from its priority queue.

The listhead for the job’s queue of processes. Each process
in the job is inserted at process creation and removed at
process (or job) deletion. Because the first entry is the job’s
master process, the JCB$A_PROCESS_FLINK address is
used by the kernel to locate or identify the master process
PCB. The queue is walked during PO page table expansion,
to update the PO length register value in each process’s
PTX, and when certain asynchronous exceptions are raised
against a process in the job.

The forward and backward links to next and previous
jobs in the system’s job queue; each job is inserted at job
creation and removed at job deletion.

The listhead for the job’s port queue. Ports are inserted
and removed from the queue as they are created and
deleted by the job. All ports are deleted when the job is
deleted.

4-8 Job and Process Creation and Deletion

Table 4-1 (Cont.): Job Control Block Fields

Field

Meaning

JCB$W_DISABLE

JCB$W_READY_SUMMARY

JCB$W_CPU_MASK

JCB$W_OBJECT_FREE

JCB$A_OBJECT_TABLE

JCB$A_PROGRAM

JCB$L_RW_DATA_PTE

JCB$L_MESSAGE_PTE

The process-switching disable count, which is increased
by 1 for each disable request and decreased by 1 for
each enable request; O indicates that process switching is
enabled.

The summary mask of the job’s ready process queues.
Each set bit in the mask indicates a nonempty ready
process queue; bit n represents the ready queue for process
priority n.

The complement mask of processors on which the job
is eligible to run; set bits indicate ineligible processors
in a tightly coupled multiprocessor configuration. Bit n
represents processor n.

The encoded value indicating the location of the next
available entry in the object pointer tables. The value is
updated during each kernel object creation and deletion.

The address of the job’s object base table, which is indexed,
when locating up a kernel object, to get an object pointer
table address.

The address of the job’s program descriptor (PRG), used to
look up program characteristics.

The prototype page table entry for the creation of PTEs for
the job’s read/write data. The valid, protection (PTE$C_
UW), owner (the program mode), and type (PTE$K _
RW_DATA) fields are present in the prototype PTE.
During PO memory allocation (global data, heap, and
KER$ALLOCATE_MEMORY) and P1 user stack alloca-
tion, the allocated page frame number is inserted into the
PFN field to create the actual PTE for the page.

The prototype page table entry for the creation of PTEs
for the job’s message and area data buffers. The valid,
protection (PTE$C_UW), owner (the program mode),

and type (PTE$K_MESSAGE) fields are present in the
prototype PTE. During the allocation of message and area
buffers, the allocated page frame number is inserted into
the PFN field to create the actual PTE for the page.

Job and Process Creation and Deletion 4-9

Table 4-1 (Cont.): Job Control Block Fields

Field

Meaning

JCB$A_PARAMETER_LIST

JCB$A_INITIAL_STACK

JCB$W_GENERATION

J CB$W_PROCESS_GENERATION

JCB$L_PORT_ID
JCB$A_PO_BASE

JCBS$L_PO_LIMIT

JCB$A_PO_BITMAP

A pointer to a linked list of the job’s program arguments,
as specified in the KER$CREATE_JOB procedure call.
(If the job is created at system start-up, the supplied
arguments are from the Program Description Menu.)
Early in job creation, each program argument is entered
into a separate job parameter block (JPB) and linked
into a list; subsequently the arguments are copied to PO
memory to allow jobwide access. JPB format is described
in Section 4.4.1.2.

The address of the initial stack top — user or kernel

— matching the job’s program mode. The initial kernel
stack top is at P1 location P1$K_KERNEL_STACK_INIT
(TFFFFDFO016); the initial user stack top is at the P1
location —512 bytes offset from the end of the kernel stack.
This field is also used for resetting the stack pointer in
case of stack errors.

The job generation number, recorded when the job is
created; the number is generated from the kernel value
KER$GW_JOB_GENERATION. Jobs created in the system
are numbered consecutively upwards from 1 in the order
created.

The process generation number; incremented each time a
process is created and recorded in the new process’s PCB
(PCB$W_GENERATION). Processes created in the job are
numbered consecutively upwards from 1 in the order of
their creation.

The identifier for the job port.

The system (SO) virtual address of the PO page table, set
during job creation when the page table is created. This
value is used to locate the PO page table during page
table expansion. The value corresponds to the value of the
POBR.

The count of PTEs in the PO page table. This value is
updated during the expansion of the PO page table and
corresponds to the value of the POLR.

The descriptor for the PO virtual page allocation bitmap.
This descriptor is used to locate and update the PO bitmap
during the allocation of PO virtual memory. The format of
the bitmap descriptor (BMP) is described in Chapter 9.

4-10 Job and Process Creation and Deletion

Table 4-1 (Cont.): Job Control Block Fields

Field

Meaning

JCB$B_EXIT _PORT_ID The identifier for the job’s exit port, if one was specified;

JCB$B_MODE

otherwise 0.

The access mode of the program, as specified in the job’s
program descriptor: O for kernel mode, 3 for user mode.
This value becomes the value of the ownership field in
PTEs allocated for the job.

JCB$B_CPU_NUMBER The number of the target processor, in a tightly coupled

multiprocessor configuration, on which the job is running
or last ran. If a job is selected to run and the processor on
which it last ran is idle, the job is selected to run on the
same processor.

JCB$W_CONTEXT_COUNT The number of times a job enters the run state.

4.2.2 Process Control Block

A process control block (PCB) is created by the KER§CREATE_
PROCESS kernel procedure for each subprocess created in a VAXELN
system. In addition, a PCB is created by the KER$CREATE_JOB
kernel procedure for a job’s master process.

The PCB represents the process-specific portion of a process’s software
context, as distinct from the jobwide portion represented in the JCB.
The PCB ties together the attributes, state, resources, and components
that are private to the process. As described in Section 4.5, the PCB
is created at offset 128 within a page allocated for the PTX and PCB
in the communication region of SO address space. The information
maintained in its fields includes the following:

* Links into the scheduling queue for its process priority and into the
job’s process queue

¢ Pointers to a linked list of wait control blocks (WCBs), headed by a
timer WCB, and to a block of process arguments

* Pointers to the job’s JCB and to the process’s PTX (a virtual ad-
dress)

¢ Pointer to the process’s P1 page table, and the number of page table
entries (at the low-address end of the page table) that correspond to
inaccessible pages

Job and Process Creation and Deletion 4-11

* Fields for accumulating process statistics

Figure 4—3 shows the structure of the PCB, and Table 4-2 describes its
fields.

4-12 Job and Process Creation and Deletion

Figure 4-3: Structure of a Process Control Block

PCBSA_WAIT_FLINK

PCB$A_WAIT_BLINK

PCB$B_TYPE

PCBS$SL_SEQUENCE

PCB$B_REASON

PCB$B_STATE J

PCB$B_PRIORITY

PCBSA_JCB

PCBSA_PROCESS_FLINK

PCB$A_PROCESS_BLINK

PCB$A_SCHEDULE_FLINK

PCBS$A_SCHEDULE_BLINK

PCBSW_CONTEXT_COUNT

PCB$SW_GENERATION

PCBS$A_EXIT_ADDRESS

PCBSL_EXIT_STATUS

PCBSA_ARGUMENT

PCBS$SA_P1_BASE

PCB$SA_P1_BITMAP (12 bytes)

PCBSL_P1_LIMIT

PCBSA_PTX

PCBSA_HWPTX

PCBSL_ID

PCBSA_FIRST_WCB

PCB$B_WCB (32 bytes)

PCB$Q_TIME (8 bytes)

PCBSL_CPU_TIME

PCBSL_JOB_CPU_TIME

MLO-003223

Job and Process Creation and Deletion 4-13

Table 4-2: Process Control Block Fields

Field

Meaning

PCB$A_WAIT_FLINK
PCB$A_WAIT_BLINK

PCB$B_TYPE
PCB$L_SEQUENCE
PCB$B_PRIORITY

PCB$B_STATE

PCB$B_REASON

PCB$A_JCB

PCB$A_PROCESS_FLINK
PCB$A_PROCESS_BLINK

PCB$A_SCHEDULE_FLINK
PCB$A_SCHEDULE_BLINK

PCB$W_GENERATION

PCB$W_CONTEXT_COUNT

PCB$A_EXIT_ADDRESS

PCBS$L_EXIT_STATUS

The listhead for the queue of WCBs representing processes
waiting for this process’s termination.

This queue is walked by the KER$DELETE procedure during
process deletion to mark each process wait as satisfied and

determine whether any waiting processes can be unblocked as a
result.

The structure type: OBJ$K_PROCESS.
The object sequence number for this PCB.

The process’s priority, O (highest) to 15 (lowest). Initial process
priority is specified on the Program Description Menu.

The process’s state: PCB$K_READY (0), PCB$K_RUNNING
(1), PCB$K_SUSPENDED (2), or PCB$K_WAITING (3).

A bit mask representing asynchronous exceptions pending
against the process. The fields are listed and described in
Section 6.5.1.4.

The address of the process’s associated JCB.

The forward and backward links to next and previous processes
in the job’s process queue; the JCB$A_PROCESS_FLINK and
JCB$A_PROCESS_BLINK fields in the JCB represent the
listhead for the queue.

The forward and backward links to next and previous processes
in the ready queue for this process’s priority.

The process generation number, recorded when the job is
created; the value is generated in JCB field JCB$W_PROCESS_
GENERATION.

The number of times the process switches to the running state;
cleared at process creation and subsequently incremented for
each switch to the running state.

The user-specified PO address to which exit status is to be
returned on process termination; O if no exit address was
specified by the creator.

The exit status value.

4-14 Job and Process Creation and Deletion

Table 4-2 (Cont.): Process Control Block Fields

Field

Meaning

PCB$A_ARGUMENT

PCB$A_P1_BASE

PCB$A_P1_BITMAP

PCB$L_P1_LIMIT

PCB$A_PTX

PCB$A_HWPTX

PCBS$L_ID
PCB$A_FIRST_WCB

The address of the process argument block. If the creator of
the process specified arguments, the block contains a longword
argument count and a block of contiguous longwords containing
the arguments; otherwise the block contains an argument count
of 0.

The system virtual address of the P1 page table. This is the
address of the first existent PTE (PTE corresponding to an
accessible page) in the P1 page table. The page table grows
toward this address from the high end. This value is not

the same as PTX$A_P1BR, the value used in P1 address
translation, which reflects the base address of the nonexistent
portion (PTEs corresponding to inaccessible pages) of the P1
page table.

The descriptor for the P1 virtual page allocation bitmap. This
descriptor is used to locate and update the P1 bitmap during
the allocation of P1 virtual memory. The format of the bitmap
descriptor (BMP) is described in Chapter 9.

The number of nonexistent PTEs (PTEs corresponding to
inaccessible pages) in the P1 page table. This value is updated
during the expansion of the P1 page table and corresponds to
the value of the P1 length register (P1LR).

The virtual address of the process hardware context block
(PTX).

The physical address of the PTX. The physical address is placed
in the hardware process control block base register (PCBB)
when the process is scheduled to run, prior to the loading of the
process’s context with the LDPCTX instruction.

The object identifier for this PCB.

The address of the first WCB in the process’s current (active)
wait list. For a timed wait, this field will contain the address
of the timer WCB; for waits without a time value, it contains
the address of the first WCB for the first object specified in
the wait. The process wait list is initialized by the KER$WAIT
procedure and is walked by kernel subroutines that test and
satisfy wait conditions.

Job and Process Creation and Deletion 4-15

Table 4-2 (Cont.): Process Control Block Fields
Field Meaning

PCB$B_WCB The timer WCB, used to handle timeout values for waits
requested by the process; it is also the head of a singly linked
list of the process’s other allocated WCBs, representing objects
(resources or events) the process waits on. The list is walked
by the KER$DELETE procedure on process deletion to free the
pool blocks occupied by a process’s WCBs.

When a wait is initiated, a WCB is linked into other lists as
well: the timer WCB and its time value are linked into the
kernel’s timer queue, and the WCB for each object specified in
the wait is linked into a queue of processes waiting for that
object.

PCB$Q_TIME A 64-bit binary time value associated with the timer WCB
in the PCB$B_WCB field; this value represents the absolute
system time at which the wait expires.

PCB$L_CPU_TIME An accumulator for the process’s execution time.

PCB$L_JOB_CPU_TIME The total accumulated CPU time of all deleted processes in the
job (recorded in the master process PCB only).

4.2.3 Process Hardware Context Block

A process hardware context block (PTX) is created by the KER$CREATE_
PROCESS kernel procedure for each subprocess created in a VAXELN
system. In addition, a PTX is created by the KER$CREATE_JOB
kernel procedure for a job’s master process.

The PTX stores the hardware context of a process when it is not ex-
ecuting. The first 96 bytes provide the information a VAX processor
requires when it loads process context to place a process in the running
state or when it saves process context to remove a process from exe-
cution. Additional fields (specific to VAXELN and not loaded or saved)
provide the username, UIC, and name block address associated with
the process.

As described in Section 4.5, the PTX is created at the beginning of a
page allocated for both it and the PCB in the communication region of
S0 address space. The information maintained in the fields of the PTX
includes the following:

* Contents of the general purpose registers, stack pointer registers,
and page table registers

4-16 Job and Process Creation and Deletion

* User information for the process: username, UIC, and process
name

When a process’s context is loaded, the majority of the PTX’s fields are
moved into processor registers. When a process’s context is saved in
order for it to be removed from execution, the updated contents of these
registers is stored back into the PTX.

Figure 4—4 shows the structure of the PTX, and Table 4-3 describes its
fields.

Job and Process Creation and Deletion 4-17

Figure 4-4: Structure of a Process Hardware Context Block

PTX$A_KSP

PTXSA_ESP

PTX$A_SSP

PTXSA_USP

PTXS$L_RO

PTXSL_R1

PTXS$L_R2

PTXSL_R3

PTXSL_R4

PTXSL_RS

PTXS$L_R6

PTXS$L_R7

PTXS$L_R8

PTXS$L_R9

PTXSL_R10

PTXSL_R11

PTX$SA_AP

PTX$A_FP

PTX$A_PC

PTXS$L_PSL

PTX$A_POBR

PTX$L_PO_LIMIT

PTX$A_P1BR

PTXSL_P1_LIMIT

PTX$T_USERNAME (22 bytes)

PTXSL_UIC

—
< PTX$A_NAME_BLOCK PTXSL_UIC

PTX$A_NAME_BLOCK

MLO-003222

4-18 Job and Process Creation and Deletion

Table 4-3: Process Hardware Context Block Fields

Field Meaning

PTX$A_KSP The kernel stack pointer — used when the process is execut-
ing in kernel mode

PTX$A_ESP The executive stack pointer — not used

PTX$A_SSP The supervisor stack pointer — not used

PTX$A_USP The user stack pointer — used when the process is executing
in user mode

PTX$L_RO The contents of general register RO

PTX$L_R1 The contents of general register R1

PTX$L_R2 The contents of general register R2

PTX$L_R3 The contents of general register R3

PTX$L_R4 The contents of general register R4

PTX$L_R5 The contents of general register R5

PTX$L_R6 The contents of general register R6

PTX$L_R7 The contents of general register R7

PTX$L_RS8 The contents of general register R8

PTX$L_R9 The contents of general register R9

PTX$L_R10 The contents of general register R10

PTX$L_R11 The contents of general register R11

PTX$A_AP The contents of the argument pointer

PTX$A_FP The contents of the frame pointer

PTX$A_PC The contents of the program counter

PTX$L_PSL The contents of the processor status longword

PTX$A_POBR The contents of the PO base register for this process

PTX$L_PO_LIMIT

A bit field containing the following relevant fields:

PTX$V_POLR Bits <21:0>: the low-order 22
bits of the POLR for this process
PTX$V_ASTLVL Bits <26:24>: the value for the

AST level register (ASTLVL);
contains the access mode num-
ber of the most privileged mode
for which an asynchronous
exception is pending

Job and Process Creation and Deletion 4-19

Table 4-3 (Cont.): Process Hardware Context Block Fields

Field Meaning

PTX$A_P1BR The contents of the P1BR for this process
PTX$L_P1_LIMIT (PTX$V_ A bit field (bits <21:0>) containing the low-order 22 bits of
PI1LR) the P1LR for this process

PTX$T_USERNAME The process’s username, stored as a word-length char-

acter count followed by a username of up to 20 charac-
ters; defaults to username USER if not explicitly set by a
KER$SET USER procedure call

PTX$L_UIC The process’s UIC; if not explicitly set by KER$SET _USER,
defaults to the UIC set at build time on the Program
Description Menu (kernel value KER$GL_DEFAULT UIC)
or to the System Builder’s default, [1,1]

PTX$A_NAME_BLOCK The address of the process’s name block, if a procedure call

has been issued to name a process; otherwise 0

4.3 Job and Process Virtual Memory

A job’s PO page table maps job components and resources into the
program region of process virtual address space for jobwide access.
For each process in the job, a separate P1 page table maps process
components and resources into the control region of process virtual
address space for private access by the process. Section 4.3.1 de-
scribes the job components and resources mapped into PO memory, and
Section 4.3.2 describes the process components and resources mapped
into P1 memory.

4.3.1 Job Virtual Address Space

The PO address space of a process is created during the creation of its
job, as described in Section 4.4, and is shared among all processes in
the job. The job components and resources mapped into PO memory are
shown in Figure 4-5 and described in detail in Table 4-—4.

4-20 Job and Process Creation and Deletion

Figure 4-5: Structure of PO Virtual Memory

:00000000
No-Access Page

:00000200
Program image
(Global Data and

Executable Code)

Writeable Shareable images

Job Context Page

Job Dynamic Memory,
Heap Data, and
Message Buffers

Direction
of Growth

Unmapped Portion of
PO Space

P | o o of of = S ¢ MLO-003221

< PO Virtual Size Limit

P -

Job and Process Creation and Deletion 4-21

Table 44: Job Components Mapped into PO Address Space
Component Purpose

No-access page A single page whose bit is cleared in the PO virtual memory bitmap
to ensure that it is never allocated. The page is made inaccessible
because the VMS Linker does not normally allocate virtual addresses
below 200;s.

Program image The program’s global data and executable code. At job creation, the
kernel maps into virtual memory the global data and executable code
program image sections created by the VMS Linker and described by
kernel section descriptors (KSDs) in the program descriptor. KSDs
for program images are described in Section 2.4.1.3.

Writeable shareable The program’s writeable-shareable image sections, corresponding

images to the shareable images it references. At job creation, the kernel
maps into virtual memory the writeable-shareable program image
sections created by the VMS Linker and described by kernel section
descriptors (KSDs) in the program descriptor. KSDs for program
images are described in Section 2.4.1.3.

4-22 Job and Process Creation and Deletion

Table 44 (Cont.):

Job Components Mapped into PO Address Space

Component

Purpose

Job context page

Job dynamic memory

A page used to record jobwide information for run-time library
routines and the debugger. Maintained within this page is a job
context block (JCX) containing the PO address of the job’s program
arguments and context values used by the heap management rou-
tines, the debugger, and the file system. Sample fields include the
following:

JCX$A_JOB_PARAMETERS The address of the job’s program
arguments (copied from JPBs
into job dynamic memory during
job creation), valid for the life of
the job.

JCX$A_HEAP_LISTHEAD The listhead for the heap-
storage queue, the first of three
heap storage fields.

JCX$L_DEBUG_BPT_MASK The first of several debugger
context fields.

JCX$A_FILE_LISTHEAD The first of four open-file context
fields, including a listhead for
file rundown on job exit.

A region of memory used to map heap data (allocated, for example,
by the Pascal routines NEW and DISPOSE), message buffers created
by KER$CREATE_MESSAGE, shared memory buffers created

by KER$CREATE_AREA, and memory allocated at PO virtual
addresses by KERSALLOCATE_MEMORY. This dynamic region can
expand from the base of job dynamic memory — one page beyond
the last page mapped by the program image — to the PO virtual
size limit established by the PO virtual size value on the System
Characteristics Menu. Allocating job dynamic memory is discussed
in Section 9.3.2.2.

4.3.2 Process Virtual Address Space

The P1 address space of a process is mapped during its creation, as
described in Section 4.5, and is inaccessible to other processes in the job
and in the system. The process components mapped into P1 memory
are shown in Figure 4—6 and described in detail in Table 4-5.

Job and Process Creation and Deletion 4-23

NOTE

Figure 4—6 and Table 4-5 do not represent or describe dy-
namic memory allocated at P1 virtual addresses with the
KER$ALLOCATE_MEMORY procedure, because such allo-
cations are not typical and require careful attention. For
example, an allocation in kernel or user stack space would
require a guarantee that the allocated area not be used for
normal stack activity while allocated. KERSALLOCATE_
MEMORY typically is used to allocate PO dynamic mem-
ory, as reflected in the corresponding PO figure and table in
Section 4.3.1.

Figure 4-6: Structure of P1 Virtual Memory

P e e e eeee——-- .
| Unmapped Portion of |'40000000
| P1 Space |
<< P1 Virtual Size Limit
Direction
of Growth
User Stack

(user-mode jobs only)

No-Access Page
(user-mode jobs only)

Kernel Stack
(fixed size in user mode)

Process Context Data

7FFFFFFC MLO-003224

4-24 Job and Process Creation and Deletion

Table 4-5: Process Components Mapped into P1 Address Space

Component

Purpose

User stack

No-access page

Kernel stack

The dynamic memory region used by user-mode processes, when
executing in user mode, to store automatic (local) variables and
procedure call frames and argument lists (in stack-based languages
such as VAX C and VAXELN Pascal).

The initial size of the user stack is set by the User stack entry

on the Program Description Menu and is transmitted to the kernel
through the program descriptor value PRG$W_USER_STACK. The
same initial stack size is used for every process created in a job. As
stack requirements increase at run time, the kernel expands the
user stack. A limit for expansion is specified as the P1 virtual size
value on the System Characteristics Menu.

The user stack begins at a —512 byte offset from the end of the
kernel stack.

This stack exists only for user-mode programs.

A guard page marked inaccessible by the kernel to separate the user
and kernel stacks. Attempts to access this page inform the kernel
that the kernel stack has overrun its limit. This page exists only for
user-mode programs.

The dynamic memory region used by kernel-mode processes to store
automatic (local) variables and procedure call frames and argument
lists. This stack is also used by user-mode processes executing in
kernel mode, as they do when executing most kernel procedures (see
Chapter 8).

The size of the kernel stack is set by the Kernel stack entry on
the Program Description Menu and is transmitted to the kernel
through the program descriptor value PRG$W_KERNEL_STACK.
Overrunning the stack limit causes a fatal kernel stack exception
in the process. Kernel-stack overrun can be circumvented through
the use of the ELNSALLOCATE_STACK utility procedure, used by
kernel-mode programs to explicitly expand the stack.

The kernel stack begins at fixed location P1$K_KERNEL_STACK_
INIT — 7TFFFFDF016 — at a —1016 byte offset from the end of
the first page allocated for kernel stack. The offset allows for the
presence of 4 process context longwords (part of the process context
data area) at the end of the page.

Job and Process Creation and Deletion 4-25

Table 4-5 (Cont.): Process Components Mapped into P1 Address Space
Component Purpose

Process context data Process context longwords and process debugging information. The
process context longwords occupy the high-order 16 bytes of the
first page allocated for the kernel stack, immediately following the
kernel stack base (P1$K_KERNEL_STACK_INIT) in P1 memory.
If debugging was requested, the process debugging information is
maintained at the beginning of the next virtual page, which is the
last page of P1 memory.

The process context longwords provide fixed locations for storing
context addresses, as follows:
P1$GA_JCX The jobwide context address; the job

context data area is shown in Figure 4-5
and summarized in Table 4—4.

P1$GA_ADA_CTX Ada run-time context address.
P1$GA_ADA_DATA Ada data run-time context address.
P1$GA_CRTL_CTX C run-time library context address.

If debugging was requested for a program, process-specific infor-
mation for use by the debugger is maintained in a process context
block (PCX) at location P1I$GR_CONTEXT — 7FFF FE00,6 — the
beginning of the last page of P1 memory. The PCX is initialized by
the debugger bootstrap at the conclusion of job or process creation.

4.4 Job Creation

The goal of job creation is to establish an environment for the execution
of a program. At system start-up, when the first jobs are created in a
system, the kernel’s initialization sequence has already prepared the
system for the creation and execution of jobs and processes. When

the KER$CREATE_JOB kernel procedure (in module CREATEJOB)

is invoked, the kernel creates a job and a master process to execute a
program’s main code thread, beginning at its linker-specified transfer
address. Jobwide and process-specific contexts and address spaces are
established and a scheduling pass is made. When the job is scheduled
to run, execution of the program’s main code by the master process will
begin.

4-26 Job and Process Creation and Deletion

This section focuses on the job creation sequence, which proceeds
through three phases:

1. The initial KERSCREATE_JOB procedure call is handled. This
phase creates the minimal job and process context that will allow
the job’s master process to continue creation of the job. Thus the
creating job can be decoupled from the created job and continue
executing its own code.

At the conclusion of this phase, a scheduling pass is made, which
can result in the job and master process being selected to run
immediately or being placed in the ready job and process queues for
their priorities. Saved in the PC field of the master process’s PTX
is the address of its continuation point within the CREATEJOB
module, the FINISH_JOB subroutine. The initial procedure call
exits by executing an REI instruction, returning status to its caller.
Section 4.4.1 describes this phase.

2. When the system state permits, the master process of the new job
is placed in the running state by the scheduler and exercises the
FINISH_JOB subroutine, which completes the creation of the job
environment.

This phase concludes when the kernel executes an REI instruction
to transfer control to another CREATEJOB module subroutine,
KER$ENTER_PROCESS, in the base program mode, user or ker-
nel, specified in the program’s descriptor. Section 4.4.2 describes
this phase.

3. Job creation is completed in the user-specified program mode.
This phase sets up entry to the program’s transfer address. (If
debugging was requested and the debugger is present, control is
first transferred to the debugger bootstrap.) Section 4.4.3 describes
this phase.

4.4.1 Phase 1: Creating Minimal Job and Master Process Context

Job creation is initiated by a call to the KER$CREATE_JOB kernel pro-
cedure. The KER$CREATE_JOB procedure can be called implicitly by

system software — such as system initialization and start-up modules,

the debugger, ECL, and LAT — or explicitly by application software.

Job and Process Creation and Deletion 4-27

The main objective of the initial phase of job creation is to construct the
minimal job and process context necessary to allow job creation to con-
tinue under the control of the job’s master process. By returning from
the initial KER$CREATE_JOB procedure call as quickly as possible,
the kernel decouples the creating job from the created job so that each
job can continue executing code in the normal scheduling environment.
When the job’s master process has been provided with enough context
to be scheduled, an REI instruction is executed to exit the system call
and return control to the caller.

The kernel creates a minimal job and master process context as follows:

1.

ANl S

KER$CREATE_JOB call arguments are verified.
The JCB is created and initialized.

Structures are created for managing the job’s objects.
JCB fields are initialized for PO memory mapping.

The master process is created and initialized: PCB and PTX struc-
tures are created for it, its PCB is entered into the job’s first object
pointer table, its PO and P1 page tables are allocated, and a page of
kernel stack is allocated for it.

The job’s message port is created.

For KA620-based systems only, the entire PO page table is allo-
cated.

A scheduling pass is made, which can result in the job and master
process being selected to run or being placed in ready job and
process queues.

44.1.1 Step 1 — Verify Call Arguments

The KER$CREATE_JOB procedure begins by verifying the arguments
passed to it on the stack. The checks made are as follows:

Job message port address. The location to receive the job port
identifier must be writeable; if not, the procedure exits with KER$_
NO_ACCESS status.

Program name. The program name must be readable. If it is, then
the system’s program descriptor table is scanned for a program
list entry matching the caller-specified program name. If no match
is found, the procedure exits with KER$_NO_SUCH_PROGRAM
status. If the program is found, and it’s a dynamically loaded
program, the program reference count, variable PRG$W_REF_
COUNT in the program descriptor, is incremented. The kernel

4-28 Job and Process Creation and Deletion

maintains this variable for each dynamically loaded program to
record how many currently active jobs are running the program, to
prevent premature unloading of the program.

¢ Exit port address. The port identifier argument, if specified, must
be readable; if not, the procedure exits with a KER$_NO_ACCESS
status.

* Job parameter strings. Each string argument specified must be
readable and of the correct size.

4.4.1.2 -Step 2 — Create the Job Control Block

After verifying the arguments passed to it, the KER$CREATE_JOB
procedure allocates the pool blocks (3, plus 1 for each job argument)
and the communication region pages (2) it will need to create job data
structures.

The KER$ALLOCATE_POOL subroutine, described in Section 9.4, is
used for the pool allocation. Each pool block allocated by KERSALLOCATE
POOL must subsequently be removed from the pool before it can be

used. Pool blocks are allocated for the following job and master-process
control structures:

¢ Ready-process queue header block, containing listheads for the job’s
16 priority-ordered ready process queues

* Initial allocation of an object pointer table, to hold pointers to the
first 32 objects created dynamically within the job — beginning
with the process object for the master process

¢ Initial allocation of four WCBs to be used when the master process
issues a KER$WAIT call

¢ A pool block for each job argument; a JPB is created in each pool
block

The KERSALLOCATE_REGION subroutine, described in Section 9.3.1.1,
is used for memory allocation from the communication region. The first
page of the allocated memory holds the job’s JCB; the second page holds
the master process’s PTX and PCB.

The kernel clears 128 bytes for the JCB at the beginning of the 2 pages
from the communication region. The kernel proceeds to create other
structures to be linked into or otherwise referenced from the JCB.

Job and Process Creation and Deletion 4-29

The kernel copies any caller-specified program arguments (as verified in
step 1) into a linked list of JPBs. (If the job is created at system start-
up, the supplied arguments are from the Program Description Menu.)
For each job argument, a pool block is removed from the allocated pool
and a JPB created in the pool block. Each JPB is linked into a singly-
linked list whose head is the JCB$A_PARAMETER_LIST field in the
JCB. The fields in the parameter block are described in Table 2—4.

When the job’s PO address space has been established, later in job
creation, the program arguments are copied there in a format that
allows faster jobwide access to them. The argument strings them-
selves are preceded in PO memory by a standard VAX argument list
containing the argument count and the addresses of each parameter
string descriptor. At that point, the JPB pool blocks are returned to the
system.

The kernel proceeds to initialize other portions of the JCB as follows:

¢ The structure type field, JCB$B_TYPE, is set to value OBJ$K_JOB,
indicating a JCB structure.

* The job priority field, JCB$B_PRIORITY, is set to the value con-
tained in the associated program description (field PRG$B_JOB_
PRIORITY).

¢ The JCB field containing the priority of the highest priority ready
process in the job, JCB$B_READY_PRIORITY, is set to the ini-
tial process priority of the master process, which will be the job’s
only process when the job is first eligible for scheduling. The
value is copied from the process priority field (PRG$B_PROCESS_
PRIORITY) of the PRG.

¢ The job state field, JCB$B_STATE, is set to value JCB$K_READY,
indicating a ready state.

® The current process field, JCB$A_CURRENT_PCB, is set to the
address of the master process PCB. The current process is the
process placed in the running state for this job; the designated
process is actually running only if its job is running.

¢ The listhead for the job’s process queue, fields JCB$A_PROCESS_
FLINK and JCB$A_PROCESS_BLINK, is initialized to an empty
queue.

* The listhead for the job’s port queue, fields JCB$A_PORT_FLINK
and JCB$A_PORT_BLINK, is initialized to an empty queue.

4-30 Job and Process Creation and Deletion

The job’s process-switching disable count, JCB$W_DISABLE, is
initialized to 0, indicating process switching is enabled for the job.
A disable request received at run time increases this count by 1,
and an enable request decreases the count by 1. A count greater
than 0 indicates process switching is disabled.

The job’s context switch count, JCB$W_CONTEXT_COUNT — the
number of times the job has entered the running state — is cleared.

The job’s process-scheduling ready summary mask, JCB$W_
READY_SUMMARY, is cleared, indicating all ready-process queues
in the priority-ordered set (pointed to by JCB$A_PROCESS_
QUEUES) are initially empty.

The job’s ready-process queue listheads are created at the beginning
of a pool block from the earlier pool allocation. A set of 16 quad-
word listheads, one for each process priority level (0-15, in order),
is initialized. The JCB$A_PROCESS_QUEUES field is set to the
address of the pool block; this address is indexed by priority value
when the kernel needs to locate a particular priority ready-process
queue.

The job’s processor eligibility mask, JCB$W_CPU_MASK, is initial-
ized with the eligibility mask from the PRG. In a tightly coupled
symmetric multiprocessing system, each bit set in the eligibility
mask indicates eligibility for a processor; bit n indicates eligibility
for processor n. Under the current design, the mask copied from
the program description is always 0, indicating the job initially is
eligible to run on any processor; however, a device driver on a VAX
8800-series multiprocessing system is by default made eligible only
for the processor that handles the device’s interrupts, when it is-
sues a KER§CREATE_DEVICE call. This mask can be altered with
the KER$SET_JOB_ELIGIBILITY procedure. In single processor
systems, altering this mask has no effect.

The job’s generation number, JCB§W_GENERATION, is set; the
kernel’s count of generated jobs, KER$GW_JOB_GENERATION, is
increased by one and copied into the JCB field.

The job’s seed for generating process generation numbers, JCB$W_
PROCESS_GENERATION, is initialized to 0. For each process
subsequently created in the job, the JCB count is increased by 1
and copied into the PCB field PCB$W_GENERATION.

If the job creator specified an exit port for the job — a port to
receive the master process’s completion status when the job ter-
minates — the exit port’s identifier is placed in JCB field JCB$B_
EXIT_PORT_ID.

Job and Process Creation and Deletion 4-31

* The program’s access mode, kernel or user, in which the job’s
processes are to begin their execution, is copied from the PRG into
the base access mode field of the JCB, JCB$B_MODE.

4.4.1.3 Step 3 — Create Object Management Structures

During job creation, the kernel creates data structures for managing
the objects created dynamically for or by the job:

* The object base table, which contains the addresses of dynamically-
created object pointer tables. This table forms the first tier in a
two-tiered arrangement of address tables and can hold the ad-
dresses of up to 128 object pointer tables. The base table occupies
one 512-byte page in the communication region.

The KER$CREATE_JOB procedure creates a single base table
(with the internal routine KER$ALLOCATE_REGION in module
ALLOCATE) and stores its address in the JCB$A_OBJECT_TABLE
field of the JCB. This field is used when looking up a job object to
locate the job’s object base table. The table exists until the job is
deleted.

¢ The object pointer tables, which contain the addresses of dynam-
ically created kernel objects. These tables form the second tier of
address tables. A pointer table occupies one 128-byte pool block
and can contain the addresses of up to 32 kernel objects. (Since
there can be up to 128 pointer tables and each can point to up to 32
objects, a job can have up to 4096 objects.)

The KER$CREATE_JOB procedure creates the job’s initial object
pointer table (with the internal routine KER$ALLOCATE_OBJECT
in module ALLOCATE) and places its address in the job’s object
base table; subsequent tables will be allocated as each pointer table
fills up. (Once a pointer table is allocated, it exists until the job is
deleted, even though many of the objects it points to may no longer
exist.) KER$CREATE_JOB places in the JCB$W_OBJECT_FREE
field of the JCB an encoded value representing the location of the
next available entry in the object pointer tables. This field is used
and updated when creating or deleting job objects.

The first object represented in a job’s object tables is the PCB of its
master process.

Chapter 10 describes the object base table and the object pointer tables
in more detail.

4-32 Job and Process Creation and Deletion

4.4.1.4 Step 4 — Initialize JCB Fields for PO Memory Management

To prepare for the mapping of the job’s executable program code and
global data into PO address space in the second phase of job creation,
the KERSCREATE_JOB procedure initializes three fields in the JCB:

* The JCB$A_PROGRAM field receives the address of the job’s pro-
gram descriptor, used to look up program characteristics.

¢ The JCB$L_MESSAGE_PTE field receives a prototype page table
entry (PTE) for creating and filling in PTEs for the job’s mes-
sage and area buffers. The kernel creates a PTE with the valid,
protection (PTE$C_UW), owner (program access mode), and type
(PTE$K_MESSAGE) fields present. During the allocation of mes-
sage and area buffers, the allocated page frame number is inserted
into the PFN field to create the actual PTE for the page.

e The JCB$L_RW_DATA_PTE field receives a prototype page table
entry (PTE) for creation of PTEs for the job’s read/write data. The
kernel creates a PTE with the valid, protection (PTE$C_UW),
owner (program access mode), and type (PTE$K_RW_DATA) fields
present. During PO memory allocation (global data, heap, and
KER$SALLOCATE_MEMORY) and P1 user-mode stack allocation,
the allocated page frame number is inserted into the PFN field to
create the actual PTE for the page.

4.4.1.5 Step 5 — Create the Master Process

A major part of job creation is establishing a master process to execute
the program’s main code thread. However, in the first phase of job
creation, the more immediate goal is to create a master process with
enough context to assume control of job creation in the second phase.

For the most part, the actions taken by the kernel to create a master
process in phase 1 mimic the corresponding phase of subprocess cre-
ation, as described in Section 4.5.1. The kernel proceeds as follows;
detail is provided only for steps that differ significantly from subprocess
creation:

1. The master process’s PCB is created and initialized. This step
matches step 2 of subprocess creation (Section 4.5.1.2), with one
difference: the master process state, field PCB$B_STATE, is initial-
ized to indicate a running state (PCB$K_RUNNING). This marks
the master process to run when the job is selected to run, since the
master process is initially the only ready process in the job.

Job and Process Creation and Deletion 4-33

2. The PTX for the master process, representing its hardware context,
is initialized. This step matches step 3 of subprocess creation
(Section 4.5.1.3), except as follows:

¢ The name block field, PTX$A_NAME_BLOCK, of the PTX is
cleared; a master process is given no name. Unlike a subpro-
cess, which can be named and displayed with the given name
by VAXELN utilities, a master process generally remains un-
named. For display purposes, VAXELN utilities use the job’s
program name for the master process; any name established
for a master process by a run-time call to the KER$CREATE _
NAME or KER§NAME_OBJECT procedure is disregarded.

* The PC and PSL fields of the PTX are prepared for transfer
to the next phase of process creation. The PTX$A_PC field
receives the address of the FINISH_JOB internal subroutine.
When the new process is first scheduled to run, it will reenter
the CREATEJOB module at FINISH_JOB and execute the
second phase of job creation. The PTX$L_PSL field is cleared to
initialize access mode to kernel (0) and IPL to 0 for when the
process is first scheduled to run.

¢ The POLR processor register subfield of PTX$L_PO_LIMIT
is cleared, since the master process initially executes a
CREATEJOB module routine, FINISH_JOB, out of SO ad-
dress space. The master process’s POLR value is set up for
program code execution later, as the program’s PO code and
global data are mapped or allocated and mapped. (The POBR
field is initialized in step 4 of master-process creation.)

The ASTLVL subfield of PTX$L_PO0_LIMIT receives the value
PSL$C_USER + 1 (4), indicating no asynchronous exception is
pending for the master process.

3. The PCB for the master process, as the kernel object representing
the master process, is entered into the job’s object tables. An object
pointer table entry is allocated and receives the address of the PCB.
This step matches step 6 of subprocess creation (Section 4.5.1.6).
The master process PCB is the first object entered in the job object
tables.

4. The job’s PO page table is allocated. A PO page table slot is allo-
cated with a call to the KER$ALLOCATE_PO_SLOT subroutine,
following which the page table’s base address (equal to the slot’s
base address) is placed in the PTX (PTX$A_POBR) and the JCB
(JCB$A_PO_BASE). (The POLR field of the PTX was initialized in
an earlier step of master process creation.)

4-34 Job and Process Creation and Deletion

Also, both address subfields of the PO allocation bitmap descriptor
in the JCB (JCB$A_PO_BITMAP) are initialized with the address
(within the slot) of the PO allocation bitmap. Length fields in

the descriptor remain clear. This zero-length bitmap will cause
the allocation of a page of PTEs for the first 128 pages of virtual
memory for the job when the kernel first attempts to allocate PO
memory to map the job’s image sections.

Chapter 9 describes PO page tables and their handling in detail.

5. The master process’s P1 page table is allocated. This step matches
step 4 of subprocess creation (Section 4.5.1.4). Chapter 9 describes
P1 page tables and their handling in detail.

6. The master process’s username and UIC are written into fields
PTX$T_USERNAME and PTX$L_UIC of the PTX. The username
and UIC are inherited from the creating process, unless the job
being created is the system start-up job. In the case of the start-
up job, the master process is given the username USER and the
default UIC specified on the Program Description Menu.

7. One page of kernel stack is allocated for the master process, part
of the minimal context the master process needs to assume control
of the second phase of job creation. This step corresponds to step
5 of subprocess creation (Section 4.5.1.5). Remaining process stack
allocation is done in the second phase.

4.4.1.6 Step 6 — Create the Job’s Job Port

After creating the master process, the KER$CREATE_JOB procedure
creates the job port with a call to the KER$CREATE_PORT kernel
procedure. The message limit set for the job port is the job port mes-
sage limit specified on the Program Description Menu. Because this
phase of job creation is executed by the caller of KER$CREATE_
JOB rather than the newly created job, the port object allocated by
KER$CREATE_PORT resides in the creating job’s port queue; so the
kernel rewrites the port object’s owner field (PRT$A_OWNER) with a
pointer to the new job’s JCB, removes the object from the creating job’s
port queue, and inserts it into the created job’s port queue. The port’s
local identifier is stored in the JCB$L_PORT_ID field of the JCB.

Job and Process Creation and Deletion 4-35

4.4.1.7 Step 7 — Allocate the PO Page Table for KA620-Based Systems

If the new job is being created for a KA620-based system, such as the
rtVAX 1000, page table entries for the entire PO page table are allo-
cated. PO and P1 page tables on the KA620 processor are physically
contiguous and referenced with physical addresses, which saves virtual
address translations for process-space memory references. The process
page tables on a KA620 processor are not expanded dynamically in
one-page increments up to the specified limit for the process; rather,
they are completely allocated during job (P0O) and process (P1) creation.
A mock POPTE allocation and deallocation is performed to force imme-
diate allocation of the entire PO page table, and the POBR field of the
PTX is updated accordingly.

4.4.1.8 Step 8 — Initiate a Scheduling Pass

At the conclusion of the first phase of job creation, the job’s JCB (at
field JCB$A_JOB_FLINK) is linked into the queue of all jobs within
the system (accessed through global listhead KER$GQ_SYSTEM_
JOB). Then the kernel calls the KER$READY_JOB subroutine, which
initiates a scheduling pass. The job and its master process might be
selected to run immediately — for example, if the created job has a
higher combined job and process priority than the creating job in a
single-processor system — or might be placed in the ready-job and
ready-process queues for their priorities to await a change in system
state that allows the job to run.

Finally, the KER$CREATE_JOB procedure returns to its caller with
an REI instruction. When the newly created job is selected to exe-
cute by the scheduler and begins running, it will run in kernel mode
and execute the FINISH_JOB subroutine to finish creating the job
environment.

4.4.2 Phase 2: Finishing Creation of the Job Environment

The main objective of the second phase of job creation is to complete
construction of the job environment. At the end of the second phase, a
REI instruction is executed that transfers control to the user-specified
program mode (kernel or user) and to a subroutine in the CREATEJOB
module that sets up entry to the program’s transfer address.

The kernel completes creation of the job environment as follows:

1. The process stacks are allocated.

4-36 Job and Process Creation and Deletion

2. The job’s image sections are mapped to PO memory.

@

Program arguments are stored in PO memory for jobwide access.

4. Transfer to program mode and to the KERSENTER_PROCESS
subroutine is set up.

4.4.2.1 Step 1 — Allocate the Process Stacks

To finish allocating the master process’s stacks, the kernel calls the
CREATEJOB subroutine KERSALLOCATE_PROCESS_STACK, which
is called for both master process and subprocess creation. Using the
stack sizes specified in the program description for the job’s program,
KER$ALLOCATE_PROCESS_STACK allocates the remainder of the
kernel stack (beyond the page already allocated) and, if the pro-
gram mode is user, the user stack. If the user stack is allocated, an
extra guard page is also allocated between the user stack and the
kernel stack, to mark the end of the fixed-length kernel stack. The
KER$ALLOCATE_PROCESS_STACK subroutine is described in detail
in Section 4.5.2.1, which covers the corresponding step of subprocess
creation.

4.4.2.2 Step 2 — Map the Job’s Image Sections

In the second phase of job creation, the kernel maps into job (P0)
address space the job’s image sections, as specified in lists linked to
the job’s program descriptor. The job’s image sections contain the
executable code and global data of the program and of object library
routines it references, as well as the code and data of shareable images
referenced by the program.

Each image section is described by a kernel section descriptor (KSD),
which resides in a list of KSDs pointed to by the program descriptor.
The KSD describes the image section’s characteristics and virtual
memory requirements; diagrams of KSDs are provided in Chapter 2.

The program’s KSD list includes private KSDs, which describe the
program’s executable code and global data image sections, and global
KSDs, which describe a virtual address range to which the image sec-
tions of a shareable image are to be mapped. Each global KSD points
to a sublist of shareable KSDs, describing the code and data image
sections of a writeable shareable image referenced by the program.

Job and Process Creation and Deletion 4-37

The job’s program descriptor, list of KSDs, and image sections all reside
in the system image (described in Chapter 2), which was created by
the System Builder and mapped into SO address space during system
initialization. In this step of job creation, some of the program’s image
sections, such as read/write data sections, are copied from SO space into
newly allocated PO memory pages and mapped, while others, such as
read-only code or data sections, are mapped without creating a PO copy.

To map the program’s image sections, the kernel walks the program’s
KSD list and maps each section as it goes; when it encounters a global
KSD (a KSD with the type value KSD$K_GBL in the KSD$B_TYPE
field), it completely processes the sublist of shareable image KSDs
pointed to by the global KSD before returning to the main list. The end
of the main list or a shareable KSD sublist is marked by a KSD with a
size field of 0. Image mapping is complete when the kernel reaches the
end of the program’s KSD list.

For each KSD encountered in the KSD list or a shareable image sublist,
the kernel calls the internal subroutine MAP_SECTION (in the module
CREATEJOB) to map the section. The MAP_SECTION subroutine
checks the KSD’s fields to determine the image section type, and then
maps the image section accordingly:

1. If the KSD indicates no pages are to be mapped (KSD$L_PAGCNT
field equals 0), the MAP_SECTION routine exits with success
status.

Otherwise, PO page table entries are allocated to map a correct
number of pages (specified in the KSD’s page count field) starting
at the image section’s user virtual address (calculated during sys-
tem building and represented in the KSD). This is accomplished by
calling the internal routine KER$ALLOCATE_PO_PTE in module
ALLOCATE. When the call returns, the kernel updates the proces-
sor PO limit register, POLR, based on the JCB$L_PO_LIMIT field of
the created job’s JCB.

2. If the KSD describes a read/write data section (the KSD type
is KSD$K_DATA and the KSD flag KSD$V_CRF is set), MAP_
SECTION allocates the required number of PO page frames with
the internal routine KER$ALLOCATE_FRAME and fills their PFNs
into PO page table entries; other fields are inserted into each PTE
(from the prototype data PTE in JCB field JCB$L_RW_DATA_PTE)
that set the page characteristics. Each allocated PO page receives
a copy of a page of the program’s global (static) data from where it
resides in system space.

4-38 Job and Process Creation and Deletion

3. If the KSD describes a demand-zero image section (the KSD type is
KSD$K_DZRO and the KSD flag KSD$V_CREF is set), the mapping
algorithm is the same as for read/write data sections. However,
each allocated PO page is zeroed.

4. If the KSD describes a read-only code or data section (the KSD
type is KSD$K_CODE and no KSD flags are set), MAP_SECTION
double maps the image section from SO memory to PO memory, by
copying the system page table entries for the image section into the
job’s PO page table. No new physical memory is allocated; multiple
jobs can double-map and execute the system copy of the program
code. The page characteristics are set to indicate user code.

5. If the KSD describes a global common section, such as a FORTRAN
common, MAP_SECTION double maps the image section from S0
memory to PO memory, again by copying the system page table
entries for the image section into the job’s PO page table. No new
physical memory is allocated. However, the type and access fields
of the PTEs are set to indicate user read/write data, and each
page is marked as a system page to prevent its deletion upon
master-process exit.

However, if the system copy of the global common image section is
in ROM (not writeable), it must be recreated in RAM. The kernel
therefore allocates an identical global common section in PO space,
adjusts each of the global-common section’s PTEs in the SPT to
point to the PO copy, and enters (double maps) each page also in
the POPT, marked as a system page to prevent its deletion upon
master-process exit. All data is copied from the SO pages to the
PO pages. (The copying is done the first time a job is created
that references the global common section; subsequent jobs that
reference the global common section simply map it.)

After mapping each image section, the MAP_SECTION subroutine
returns with success status and an updated value for the next PO
virtual address to be mapped.

After all the program’s image sections have been mapped in PO address
space, the kernel clears the bitmap bit for page 0 of PO space, to ensure
it cannot be allocated by subsequent allocation requests. If page 0 was
already allocated for the program’s code or data, the bit was already
clear and remains clear.

Job and Process Creation and Deletion 4-39

4.4.2.3 Step 3 — Store the Job’s Program Arguments for Jobwide Access

In the second phase of job creation, the job program arguments, if
any, that were stored in the job parameter list in the first phase of job
creation are copied to the job’s PO address space, so that they can be
accessed quickly by all processes in the job and so that the pool blocks
occupied by the job parameter list can be freed.

The kernel calculates the number of bytes required to hold the argu-
ment count (4 bytes), the argument descriptors (12 bytes per descrip-
tor), and the job arguments (as indicated by field JPB$L_TOTAL_SIZE
in the job parameter listhead). The kernel then allocates the required
number of bytes by calling the KER$ALLOCATE_MEMORY routine.
The allocated memory’s starting address is returned to location JCX$A_
JOB_PARAMETERS in the job context page; this location retains the
address of the job’s program arguments for the life of the job.

Using the returned pointer to the allocated memory, the kernel first
creates a standard VAX argument list for the job. The argument list
contains the argument count and the address of the argument descrip-
tor for each argument in the list of JPBs. Following this argument
block in memory come the actual argument descriptors, in the order
their addresses appear in the argument list. The components of the
descriptors are the argument string size and the string itself. As the
contents of each JPB are copied into PO memory, the pool block occupied
by the JPB is returned to the system pool.

4.4.2.4 Step 4 — Begin Program Execution

The final step in the second phase of job creation is to transfer control
to the user-specified program mode and to the KER$ENTER_PROCESS
subroutine, which will set up entry to the program’s main code at its
transfer address, indicated by the PRG$L_TRANSFER field in the

program descriptor.

Prior to the execution of the REI instruction that triggers the possible
change of access mode, general registers are set up with addresses of
the program’s arguments, the master process PCB, the JCB, the job
context page, the job’s program descriptor, and the program’s entry
point.

Next the kernel sets up for the REI instruction mechanism. The user-
specified program mode, from the PRG$B_MODE field of the program
descriptor, is placed on the stack. And, if the specified mode is user,
the program PSL on the stack is initialized to specify user access mode.
Finally, the address of the KER$ENTER_PROCESS subroutine is

4-40 Job and Process Creation and Deletion

pushed on the stack as the address to which control is to be transferred.
The kernel then executes an REI instruction, which pops these PSL and
PC values from the stack into their respective registers. The process
is now executing in its base access mode at location KER$ENTER _
PROCESS.

4.4.3 Phase 3: Entering the Program Code

The main objective of the final phase of job creation is to set up entry
to the program at its transfer address so that program execution can
begin.

When the master process continues executing following the REI in-
struction executed in the second phase, the KER$ENTER_PROCESS
subroutine executes. This routine, which executes at the close of both
job and process creation, causes the process, in this case the master
process, to begin executing its actual code (when the process next runs).

If debugging was requested and the debugger is present in the system,
the debugger bootstrap, subroutine BOOTSTRAP_PROCESS (in mod-
ule [DEBUGJLCLNUC), is entered before the new job’s master process
executes program code. The debugger bootstrap calls a debugger sub-
routine, INIT_PROCESS_CONTEXT, to establish the process-specific
debug context for the process in the last page of P1 address space;

see Figure 4-6. INIT PROCESS_CONTEXT also initializes debugger-
related portions of the job context block (JCX) in PO memory, and sends
a message to VAXELN$DEBUG_PORT to announce the presence of
the master process. Furthermore, unless the user requested that this
job’s processes start without debugger intervention, the debugger boot-
strap calls the debugger’s first-chance exception handler as if a KER$_
DEBUG_SIGNAL exception occurred, which causes the process to await
a debugger command. If a debugger command starts execution (for ex-
ample, the GO command), control returns to the debugger bootstrap,
which then executes an REI instruction to start program execution.

Similarly, if performance collector PC coverage activity was requested,
the performance collector utility is entered before the master process
executes program code.

The KERS$ENTER_PROCESS subroutine checks for build-time selection
of the debugger or performance collector to run in conjunction with
this job. A CALLG instruction is executed to transfer control to the
debugger, to the performance collector utility, or directly to the program
entry point.

Job and Process Creation and Deletion 4—41

While executing, if the master process reaches the end of its code
without issuing a KER$EXIT procedure call (or a KER$DELETE for
itself), the RET instruction generated by the compiler is executed.
When this happens, control returns to the KER$ENTER_PROCESS
subroutine, at the instruction after the CALLG used to invoke the
process code. KER$ENTER_PROCESS proceeds to initiate the orderly
termination of the master process, as follows:

1. The process exit status and the user-supplied status value address
are pushed onto the stack.

2. The KER$EXIT kernel procedure is called. The call does not re-
turn; the KER$EXIT kernel procedure completes with a call to the
KER$DELETE kernel procedure, which deletes the master pro-
cess, the job, and all the job’s subprocesses. After job deletion, the
kernel branches to the internal routine KER$SCHEDULE_JOB to
reschedule the system.

The KER$EXIT and KER$DELETE kernel procedures are described in
Section 4.6.

4.5 Process Creation

The goal of process creation is to create a context for a single thread of
execution of a VAXELN program — either a master process to execute
the program’s main code or a subprocess to execute a routine or process
block in the program. When the KER$CREATE_PROCESS kernel
procedure (in module CREATEPRO) is invoked, the kernel creates

a process with a unique context, represented in its PCB and PTX,

and a private P1 virtual address space, mapped by its P1 page table.
Additionally, a process implicitly shares in the environment that has
been created for it by system initialization and by the creation of its job,
including the SO address space common to every process in the system,
the PO address space (containing the program code) common to every
process in the job, and the JCB into which it and all the job’s other
processes are linked. Once the process is created, a scheduling pass is
made. When the process is scheduled to run, execution of program code
by the new process begins.

This section focuses on the creation of subprocesses, as initiated by calls
to the KER$CREATE_PROCESS kernel procedure. For a description of
the creation of a master process, see Section 4.4. Subprocess creation,
like job creation, proceeds through three phases:

4-42 Job and Process Creation and Deletion

1. The initial KER$CREATE_PROCESS procedure call is handled.
This phase creates the minimal process context that will allow the
new subprocess to continue its own creation. Thus the creating
process can be decoupled from the created subprocess and continue
executing its own code.

At the conclusion of this phase, a scheduling pass is made, which
can result in the process being selected to run immediately or being
placed in the ready process queue for its priority. Saved in the PC
field of the new process’s PTX is the address of its continuation
point within the CREATEPRO module, the FINISH_PROCESS
subroutine. The initial procedure call exits by executing an REI
instruction, returning status to the caller. Section 4.5.1 describes
this phase.

2. When the system state permits, the new subprocess is placed in
the running state by the scheduler and executes a CREATEPRO
module subroutine, FINISH_PROCESS, that finishes creating the
process environment.

This phase concludes when the kernel executes an REI instruc-
tion to transfer control to a CREATEJOB module subroutine,
KER$ENTER_PROCESS, and to the base program mode, user or
kernel, specified in the program’s descriptor. Section 4.5.2 describes
this phase.

3. Process creation is completed in the user-specified program mode.
This phase sets up entry to the routine or process block transfer
address. (If debugging was requested and the debugger is present,
control is first transferred to the debugger bootstrap.) Section 4.5.3
describes this phase.

Complete descriptions of the process-specific data structures established
by process creation are provided in Section 4.2. The same section
describes the jobwide data structures established by job creation.
Chapter 3 describes the SO region, implicitly shared by all VAXELN

processes.

4.5.1 Phase 1: Creating Minimal Process Context

Subprocess creation is initiated by a call to the KER$CREATE_
PROCESS kernel procedure. The KER$CREATE_PROCESS procedure
can be called implicitly, such as when a CREATE PROCESS command
is issued from the debugger, or explicitly by application software.

Job and Process Creation and Deletion 443

The main objective of the initial phase of subprocess creation is to
construct the minimal process context necessary to allow subprocess
creation to continue under the control of the subprocess. By returning
from the initial KER$CREATE_PROCESS procedure call as quickly
as possible, the kernel decouples the creating process from the created
process so that each process can continue executing in the normal
scheduling environment. When the subprocess has been provided with
enough context to be scheduled, an REI instruction is executed to exit
the system call and return control to the caller.

The kernel creates a minimal process context for the subprocess as
follows:

1. KER$CREATE_PROCESS call arguments are verified.

The PCB, representing software context, is created and initialized.
The PTX, representing hardware context, is created and initialized.
The process’s P1 page table is allocated.

The first page of kernel stack is allocated.

ook W

The PCB representing the subprocess is entered in the job’s object
tables.

7. A scheduling pass is made, which can result in the new process
being selected to run or being placed in the ready-process queue for
its priority.

4.5.1.1 Step 1 — Verify Call Arguments

The first phase of process creation begins with KER$CREATE_
PROCESS argument checks. The kernel checks the process-argument
list and exit-status address passed to KER$CREATE_PROCESS as
follows:

¢ If the count of process arguments included in the KER$CREATE_
PROCESS argument list exceeds 31, the kernel procedure exits
with a KER$_BAD_COUNT status.

* The location designated by the caller to receive status when the
created process exits is examined. If an address was specified that
is not in the PO region, the kernel procedure exits with KER$_
BAD_VALUE status. PO address space is shared among the job’s
processes (and survives subprocess deletion).

4-44 Job and Process Creation and Deletion

4.5.1.2 Step 2 — Create the Process Control Block

After verifying call arguments, the kernel prepares to build process
structures by allocating an initial set of resources out of SO address
space. First the kernel allocates two pool blocks that will be used to
link process arguments and wait control blocks (WCBs) into the PCB.
A call is made to the internal kernel subroutine KER$ALLOCATE_
POOL, described in Chapter 9; the kernel procedure exits with KER$_
NO_POOL status if insufficient pool space is available.

Next, the kernel allocates a page from the communication region of SO
address space that will hold the PTX and the PCB. A call is made to the
kernel routine KER$ALLOCATE_REGION, described in Chapter 9; the
kernel procedure exits with KER$_NO_MEMORY status if insufficient
memory is available.

The kernel then begins building the PTX and PCB, representing the
hardware and software context of the new process, and other structures
that link into the PTX and PCB. The PTX begins at the beginning
(offset 0) of the system page shared by the PTX and PCB; the PCB
begins at offset 128 from the beginning of the same page.

The kernel begins creating the PCB as follows:

1. The PCB is cleared.

2. The listhead for the process’s wait queue — the queue of WCBs
representing processes waiting for this process’s termination — is
initialized to an empty queue. The link fields are PCB$A_WAIT_
FLINK and PCB$A_WAIT_BLINK.

3. The structure type field, PCB$B_TYPE, is set to the value OBJ$K_
PROCESS, indicating that this kernel structure represents a pro-
cess.

4. The process priority field, PCB$B_PRIORITY, is set to the initial
process priority, 0 to 15, that was specified for this program in the
Program Description menu and stored in the PRG$B_PROCESS_
PRIORITY field of the program descriptor. The created process
begins executing at this priority; a process’s priority can be altered
with KER$SET_PROCESS_PRIORITY.

5. The PCB$A_JCB field is set to point to the JCB of the creating job.

6. The process’s PCB is inserted at the end of the job’s queue of all
its processes, linked through the PCB$A_PROCESS_FLINK and
PCB$A_PROCESS_BLINK fields of the PCB. The queue listhead
resides in fields JCB$A_PROCESS_FLINK and JCB$A_PROCESS_
BLINK of the JCB.

Job and Process Creation and Deletion 445

7.

10.

11.

12.

The process generation number in the JCB (field JCB$W_
PROCESS_GENERATION) is increased by 1, and the resulting
value is recorded in the PCB’s generation number field, PCB$W_
GENERATION. A value of n indicates that this process is the nth
created in this job.

The process’s context switch count in field PCB$W_CONTEXT_
COUNT is cleared; this records how many times the process has
been switched into the running state by the scheduler.

The caller-specified exit address is copied to the PCB$A_EXIT_
ADDRESS field of the PCB. If a valid PO address (as verified in
step 1) was supplied, process status will be returned to the specified
address when or if the process terminates.

A standard VAX argument list is created for the caller-specified
process arguments and linked into the PCB. The kernel uses one
of the two pool blocks previously allocated from system pool. If no
arguments were specified, only the longword count (0) is copied to
the pool block.

A timer wait control block (WCB) is created in the PCB$B_WCB
field of the PCB, with a pointer (at offset PCB$B_WCB + WCB$A_
LIST) to a list of four other WCBs residing in a pool block. (The
pool block used is the second of the two previously allocated.)

The WCB is the kernel structure for handling KER$WAIT proce-
dure calls that synchronize process execution with events or the
availability of resources. Each process has a timer WCB and at
least four additional WCBs, each representing an element poten-
tially involved in satisfying a wait request. WCBs and the role
of KER$CREATE_PROCESS in initializing them are described in
detail in Chapter 11.

The PTX address is calculated and placed in the PCB$A_PTX field
of the PCB. (The PTX resides at the start of the system page shared
by the PTX and PCB.)

4.5.1.3 Step 3 — Create the Process Hardware Context Block
The kernel next begins filling in the PTX as follows:

1.

The name block field, PTX$A_NAME_BLOCK, of the PTX is
cleared; initially the subprocess has no name. A process can name
itself or another process in the same job with a KER§NAME_
OBJECT (in VAXELN Pascal) or KER$CREATE_NAME procedure
call.

4-46 Job and Process Creation and Deletion

The physical address of the PTX is derived and placed in the
PCB$A_HWPTX field of the PCB. The physical address of the PTX
is used (rather than its virtual address) when the kernel inserts
its address into the hardware process control block base register
(PCBB) when the process is scheduled to run.

The four stack pointer address fields in the PTX are set equal to
P1$K_KERNEL_STACK_INIT — 7FFFFDF0: — the P1 address
of the initial top of the kernel stack, which equals the base of
the kernel stack. Kernel and user stack allocation occurs later

in process creation. The executive and supervisor stack fields
(PTX$A_ESP and PTX$A_SSP) are never used.

Note that the initial kernel stack top, PISKERNEL_STACK_INIT,
is —16 bytes offset from the bottom (the high-address end) of the
kernel stack page, indicated by constant P1I$KERNEL_STACK_
TOP. Intervening are four P1 context longwords — P1$GA_JCX,
P13GA_ADA_CTX, P1$GA_ADA_DATA, and P1$GA_CRTL_CTX
— that hold jobwide, Ada, and C RTL context addresses. Although
the four longwords share a page with the beginning of the kernel
stack, they are not part of the kernel stack. This is illustrated in
Figure 4-6.

In preparation for the second phase of process creation, the general
register fields of the PTX are set up with values used in that phase.
One of the saved values is the transfer address for the process’s
code, as provided in the initial call to KER$CREATE_PROCESS.

The PC and PSL fields of the PTX are prepared for transfer to
the next phase of process creation. The PTX$A_PC field receives
the address of the FINISH_PROCESS subroutine within module
CREATEPRO. When the new process is first scheduled to run, it
will reenter the CREATEPRO module at FINISH_PROCESS.

The PTX$L_PSL field is cleared to initialize access mode to kernel
(0) and IPL to 0 for when the process is first scheduled to run.

The POBR and POLR processor register fields in the PTX are set
up. These values will be loaded into the POBR and POLR registers
when the process runs. The POBR and POLR processor registers
define the PO address space of the process and help the processor
locate the corresponding physical memory. The PTX$A_POBR and
PTX$L_PO_LIMIT fields are established as follows:

* The PTX$A_POBR field receives the POBR value, indicating the
virtual base address of the process’s PO page table, copied from
the JCB (field JCB$A_P0_BASE).

Job and Process Creation and Deletion 4-47

If the target VAX is KA620-based (such as an rtVAX 1000),
the JCB’s POBR value is translated to a physical base ad-
dress before it is stored in the PTX. (PO and P1 page tables
in a KA620 system are physically contiguous and accessed by
physical address, which saves virtual address translations for
process-space memory references.)

¢ The POLR and ASTLVL subfields of the PTX$L_P0_LIMIT field
are set up respectively with the POLR value, indicating the
effective length of the PO page table, copied from the JCB field
JCB$L_PO_LIMIT; and the value PSL$C_USER + 1 (equal to
4), indicating no asynchronous exception is pending.

4.5.1.4 Step 4 — Allocate a P1 Page Table

The process’s P1 page table is established. A P1 page table slot is al-
located that holds the process’s P1 page table and P1 region allocation
bitmap. In addition, the P1BR and P1LR processor register fields in
the PTX are set up. The P1BR and P1LR values will be loaded into the
P1BR and P1LR registers when the process runs. These registers de-
fine the P1 address space of the process, by describing the inaccessible
portion of it. The P1BR register contains the virtual address of what
would be the page table entry (PTE) for the first page of P1 memory
(location 400000001¢. The P1LR register contains a value indicating
the number of nonexistent PTEs (corresponding to inaccessible pages),
following which is the first existent PTE (corresponding to the first
accessible page).

The page table structures and related PTX fields are set up as follows:

1. The subroutine KER$ALLOCATE_P1_SLOT, in module ALLOCATE,
is called to allocate and initialize a P1 page table slot. The
KER$ALLOCATE_P1_SLOT routine is described in Chapter 9.

The subroutine allocates a P1 page table slot (using the P1 slot
allocation bitmap) and returns the system virtual addresses of the
two items of interest in the slot — the P1 page table and the P1
region allocation bitmap.

2. The PTX$A_P1BR field receives the base address of the process’s
P1 page table. The value placed in this field is the page table base
address that will be used in address translation — the base ad-
dress of the nonexistent portion of the P1 page table. The value is
calculated by converting the system virtual address of the mem-
ory allocated for the P1 page table (as stored in field PCB$A_
P1_BASE of the PCB) to reflect the base address of the P1IPTE
that would map virtual address 400000007¢. If the target VAX is a

4-48 Job and Process Creation and Deletion

KA620-based system (such as an rtVAX 1000), the P1BR value is
translated to a physical address.

3. The P1LR subfield of the PTX$L_P1_LIMIT field is set up with
the P1LR value, indicating the length in PTEs of the nonexistent
portion of the P1 page table (corresponding to inaccessible memory
pages).

4.5.1.5 Step 5 — Allocate the First Page of Kernel Stack

The next step performed in the initial phase of subprocess creation is
allocation of one page of the subprocess’s kernel stack. The remainder
of the kernel stack and a user stack (if the process is to execute in user
mode) will be allocated in the second phase of subprocess creation. The
initial page of kernel stack is part of the minimal context the subpro-
cess needs to be scheduled to execute the second phase of subprocess
creation.

4.5.1.6 Step 6 — Enter the PCB into the Job’s Object Table

The PCB, as the kernel object representing the process, is entered
into the job’s object tables. The kernel allocates an object pointer table
entry by calling the internal subroutine KER$ALLOCATE_OBJECT.
The allocated pointer table entry receives the address of the PCB. The
process object identifier returned by KERSALLOCATE_OBJECT is
placed in the PCB$L_ID field of the PCB, and its sequence number is
placed in the field PCB$L_SEQUENCE.

4.5.1.7 Step 7 — Initiate a Scheduling Pass

At the conclusion of the first phase of process creation, the kernel
calls the KERSREADY_PROCESS kernel subroutine, which initiates
a scheduling pass. The process might be selected to run immediately
— for example, if the created process has a higher priority than the
creating process (and the job continues in the running state) — or
might be placed in the ready-process queue for its priority to await a
change in system state that allows the job and process to run.

Finally, the KER$CREATE_PROCESS procedure returns to its caller
with an REI instruction. When the newly created process is selected
to execute by the scheduler and begins running, it runs in kernel mode
and executes the FINISH_PROCESS subroutine to finish creating the
subprocess.

Job and Process Creation and Deletion 4-49

4.5.2 Phase 2: Finishing Creation of the Process Environment

The main objective of the second phase of subprocess creation is to
complete construction of the subprocess environment so that control
can be transferred to the user-specified program mode, kernel or user,
for the final phase, which sets up entry to the routine or process block
transfer address.

The kernel takes the following steps to complete creation of the process
environment:

1. The remaining portion of the kernel stack is allocated and, if the
job’s program mode is user, a user stack and guard page are allo-
cated.

2. Transfer to program mode and to the KERSENTER_PROCESS
subroutine is set up.

4.5.2.1 Step 1 — Allocate the Process Stacks

To finish allocating the subprocess’s stacks, the kernel calls the subrou-
tine KER$ALLOCATE_PROCESS_STACK (in module CREATEJOB).
Using the stack sizes specified in the program descriptor,
KER$ALLOCATE_PROCESS_STACK allocates the remainder of the
kernel stack (beyond the page already allocated) and, if the program
mode is user, the user stack. If the user stack is allocated, an extra
guard page is also allocated between the user stack and the kernel
stack, to mark the end of the fixed-length kernel stack.

The KER$SALLOCATE_PROCESS_STACK subroutine executes as
follows:

1. Field JCB$A_INITIAL_STACK of the JCB is set to the value P1$K_
KERNEL_STACK_INIT, the P1 initial kernel stack address. (The
kernel stack entry in Table 4-5 further discusses the initial ad-
dress.) The initial-stack JCB field will be overwritten with the
initial user stack address in a subsequent step, if the job’s program
mode is user.

2. The kernel stack size, in pages, is extracted from the program
descriptor (field PRG$W_KERNEL_STACK) and is reduced by
one to account for the page already allocated. If more pages are
needed, the number of P1 page table entries required to map the
additional kernel-stack pages is allocated with a call to kernel
subroutine KER$ALLOCATE_P1_PTE. The PTEs are then filled
in with page frame numbers (generated by successive calls to the

4-50 Job and Process Creation and Deletion

KER$ALLOCATE_FRAME subroutine) and with the following bits
set in the remaining fields: PTE$M_VALID (valid), PTE$C_URKW
(access), PTE$C_KOWN (owner), and PTE$K_RW_DATA (type).

3. If the job’s program mode (PRG$B_MODE) is kernel, process stack
allocation is complete. Steps 4 and 5 are bypassed.

4. 1If the job’s program mode is user, the user stack size, in pages,
is extracted from the program descriptor (field PRG$W_USER_
STACK); if 0, a value of 1 is substituted, to guarantee 1 page of
user stack for the process. Also, 1 is added to the count to allow
for a guard page to separate the kernel and user stacks. Field
JCB$A_INITIAL_STACK is reset to the initial user stack address,
which is calculated by offsetting the address of the end of the kernel
stack by the byte length of the guard page, —512. The initial user
stack address is then written to the processor’s internal user stack- -
pointer register (PR$_USP), in preparation for entering user mode
in the third phase of process creation.

5. The number of P1PTEs required to map the user stack and
the guard page are allocated with a call to kernel subroutine
KER$ALLOCATE_P1_PTE. Using the prototype read/write data
PTE in field JCB$L_RW_DATA_PTE of the JCB, the user-stack
PTEs are then filled in with page frame numbers (generated by
successive calls to the KER$ALLOCATE_FRAME subroutine).
Finally, the PTE for the guard page is filled in to indicate the page
is inaccessible.

6. PILR is updated from the PCB$L_P1_LIMIT field of the PCB
(updated during the P1 mapping allocations), the P1 context ad-
dresses (except P1$GA_JCX) are cleared, and KER$ALLOCATE_
PROCESS_STACK returns.

4.5.2.2 Step 2 — Begin Program Execution

The final step in the second phase of subprocess creation is to transfer
control to the user-specified program mode and to the KER$SENTER_
PROCESS subroutine, which will set up entry to the process entry
point specified in the KER§CREATE_PROCESS call.

Prior to the execution of the REI instruction that triggers the possible

change of access mode, general registers are set up with the addresses

of the process’s arguments, the PCB, the JCB, the job context page, the
job’s program descriptor, and the routine’s entry point.

Job and Process Creation and Deletion 4-51

The kernel sets up for the REI instruction mechanism. The user-
specified program mode is pushed onto the stack. If the specified mode
is user, the program PSL on the stack is initialized to specify user
access privileges. Finally, the address of the KERSENTER_PROCESS
subroutine (in module CREATEJOB) is pushed on the stack as the
address to which control is to be transferred. The kernel then executes
an REI instruction, which pops these PSL and PC values from the
stack into their respective registers. The process is now executing in its
base access mode at location KERSENTER_PROCESS.

4.5.3 Phase 3: Entering the Process Code

The main objective of the final phase of subprocess creation is to set
up entry to the process code at its transfer address (specified in the
initial KER3CREATE_PROCESS call), so that execution can begin.
This phase is identical to the final phase of job creation, in which the
master process is set up to enter the program at its transfer address.

When a process continues executing following the REI instruction exe-
cuted in the second phase, it executes the KERSENTER_PROCESS
subroutine. This routine, which executes at the close of both job

and process creation, causes the process to be entered and program
execution to begin (when the process next becomes eligible to run).

If debugging was requested and the debugger is present in the system,
the debugger bootstrap, routine BOOTSTRAP_PROCESS (in module
[DEBUGILCLNUC), is entered before the new subprocess executes
process code. The debugger bootstrap calls a debugger subroutine,
INIT_PROCESS_CONTEXT, to establish the process-specific debug
context for the subprocess in the last page of P1 address space; see
Figure 4—6. INIT PROCESS_CONTEXT also sends a message to
VAXELN$DEBUG_PORT to announce the presence of the subprocess.
Furthermore, unless the user requested that this job’s processes start
without debugger intervention, the debugger bootstrap calls the debug-
ger’s first-chance exception handler as if a KER$_DEBUG_SIGNAL
exception occurred, which causes the subprocess to await a debugger
command. If a debugger command starts execution, control returns

to the debugger bootstrap, which then executes an REI instruction to
start subprocess execution.

Similarly, if performance collector PC coverage activity was requested,
the performance collector utility is entered before the subprocess exe-
cutes program code.

4-52 Job and Process Creation and Deletion

The KER$ENTER_PROCESS subroutine checks for build-time selection
of the debugger or performance collector to run in conjunction with
this job. A CALLG instruction is executed to transfer control to the
debugger, to the performance collector utility, or directly to the process’s
routine, function, or process block entry point.

While executing, if the process reaches the end of its code without
issuing a KER$EXIT procedure call (or a KER$DELETE for itself),

the RET instruction generated by the compiler is executed. When this
happens, control returns to the KERSENTER_PROCESS subroutine,
at the instruction after the CALLG used to invoke the process code.
KER$ENTER_PROCESS proceeds to initiate the orderly termination of
the process, as follows:

1. The process exit status and the user-supplied status value address
are pushed on the stack.

2. The KER$EXIT kernel procedure is called. The call does not re-
turn; the KER$EXIT kernel procedure completes with a call to
the KER$DELETE kernel procedure, which deletes the process.
After process deletion, the kernel branches to the internal routine
KER$SCHEDULE_PROCESS to schedule the next process.

The KER$EXIT and KER$DELETE kernel procedures are described in
Section 4.6.

4.6 Job and Process Exit and Deletion

Deleting a VAXELN process with the KER§DELETE kernel procedure
deactivates an execution thread within the system. If the process
undergoing deletion is a master process, the entire job is terminated,
its subprocesses are deleted, and its system resources are freed. (If
the job was executing a dynamically loaded program, deletion may
also unload the program from the system.) If the process’s termination
began with an implicit exit — due to the process reaching the end of its
block or routine — or with an explicit call to KER$EXIT from program
code, additional orderly cleanup is performed before the process is
deleted.

A VAXELN process is deleted under the following circumstances:

* Implicit exit from program code. The process reaches the end of the
procedure code it is executing. A RET instruction in the compiler-
generated code is executed, returning control to the KER$ENTER_
PROCESS subroutine (in module CREATEJOB) that initiated the

Job and Process Creation and Deletion 4-53

process’s execution. The KER$ENTER_PROCESS subroutine calls
the KER$EXIT procedure on behalf of the process. KER$EXIT
performs orderly cleanup and then invokes the KER$DELETE
kernel procedure to delete the process.

¢ Explicit exit from program code. The process executes a KERSEXIT
procedure call in the program code. KER$EXIT performs its
cleanup and then invokes KER$SDELETE.

¢ Explicit deletion from program code. The process executes a
KER$DELETE procedure call to delete itself or is the object of
a deletion call by another process. (The process also may be the
target of a DELETE PROCESS request from the debugger, or be
forced into deletion by a kernel or RTL module that detects a fatal
error.)

* Unhandled exception. An exception is raised in the process and is
not handled by the process or from the debugger. (This includes
unhandled asynchronous exceptions, such as those raised by the
KER$SIGNAL and KER$RAISE_PROCESS_EXCEPTION pro-
cedures.) The kernel forces the process to terminate by calling
KER$EXIT with the exception (signal) name as the exit status. For
more details on exception handling, see Chapter 6.

* Fatal process-level bugcheck. Some serious error in the pro-
cess’s context has caused the kernel to issue a fatal bugcheck
for the process. The subroutine KER$BUG_CHECK (in module
BUGCHECK) forces the process to exit by calling KER$EXIT with
KER$_BUGCHECK as the exit status.

* Subprocess’s master process is deleted. Deleting a master process
causes KER$DELETE to be invoked for each subprocess in the job.

The VAXELN procedure that deletes object-related kernel resources,
KER$DELETE (in module DELETE), is described in Chapter 10.
Section 4.6.1 describes the actions KER$DELETE takes to delete a
VAXELN subprocess. Section 4.6.2 describes the additional job object
rundown, memory deallocations, and dynamic program unloading
involved when a master process is deleted.

4-54 Job and Process Creation and Deletion

4.6.1 Process Deletion

This section describes the steps in process deletion that are common
to both subprocess and master process deletion. The additional actions
that are performed for master-process deletion — deletion of the job,
deallocation of job resources, and dynamic program unloading — are
described in Section 4.6.2.

The actions taken by the KER$DELETE procedure to delete a process
are as follows:

1

If no exit status has been set for the process — as indicated in field
PCB$L_EXIT_STATUS of the PCB — the status value KER$_NO_
STATUS is placed in that field.

The process’s accumulated CPU time, in field PCB$L_CPU_TIME,
is added to the accumulated job CPU time in field PCB$L_JOB_
CPU_TIME of the master process PCB. The resulting value repre-
sents the total accumulated CPU time of all deleted processes in
the job. :

The object table entry allocated for the process PCB is freed with a
call to the internal subroutine KER$FREE_OBJECT.

If the process creator requested exit status, and the location speci-
fied for it is writeable in the program’s mode, the kernel moves the
exit status from the PCB$L_EXIT _STATUS field of the PCB to the

caller-specified location.

The waits of all processes waiting on this process deletion are
potentially satisfied. All the process’s WCBs are dequeued and
processed in turn. For each WCB linked into the process’s PCB,
the wait state is set to satisfied (WCB$B_SATISFIED), then (unless
the process was waiting on itself) the internal routine KER$TEST_
WAIT is called to determine whether the wait on the process be-
ing deleted is completely satisfied as a result. If so, the internal
routines KER$SATISFY_WAIT and KER$UNWAIT, described

in Chapter 11, are called to formally satisfy the wait. The wait
completion status returned is KER$_SUCCESS.

If the current process is deleting a process other than itself (that is,
a process not in the running state), the specified process is removed
from the appropriate state queue or JCB pointer field — the ready
queue for its priority if it is in a ready state, the wait queues it
resides in if it is in a waiting state, or the JCB$A_NEXT PCB slot
in the JCB if it is the designated next process to run in the job.

Job and Process Creation and Deletion 4-55

If the current process is deleting itself, an SVPCTX instruction is
executed to get onto the interrupt stack and off the process stack.

7. The process’s P1 page table and page table entries are freed with
a call to the local subroutine FREE_PTE and the internal routine
KER$FREE_P1_SLOT.

8. The control blocks associated with the process are freed. A series
of calls to the internal routine KER$FREE_POOQOL frees the process
argument block, pointed to by the PCB$3A_ARGUMENT field of the
PCB, and all pool blocks occupied by the process’s WCBs, pointed
to by the PCB$B_WCB field of the PCB. The pointer to the PCB is
cleared from the process’s name block — if the process was named.
The process’s PCB is unlinked from the job’s list of processes.
Finally, the SO page containing the PCB and the PTX is freed with
a call to the internal routine KER$FREE_REGION.

9. If the current process is deleting itself, a new process must be
scheduled to run, so the procedure branches to KER$SCHEDULE_
PROCESS, which leads to an exit through the REI instruction.

10. If deleting the last process in the job’s list — the master process —
a new job must be scheduled to run on the current processor, so the
procedure branches to KER$SCHEDULE_JOB, which leads to an
exit through the REI instruction.

11. The KER$DELETE call exits with an REI instruction, returning
successful completion status KER$_SUCCESS.

4.6.2 Master Process Deletion

When a master process is deleted, the kernel deletes all processes in
the job (following the steps listed in Section 4.6.1 for each process),
deletes the job, and frees the job’s resources. Additionally, if the pro-
gram executed by the job is a dynamic program and a request has been
received to unload it, the program is unloaded, provided no other job is
executing it.

The actions taken by the KER$DELETE kernel procedure (in module
DELETE) to delete a master process are all the steps listed for a
subprocess in Section 4.6.1, along with the following additional steps:

1. The KER$GQ _PREV_JOB_TIME global variable, which accumu-
lates the CPU time used by deleted jobs, is updated. The accumu-
lated job CPU time in field PCB$L_JOB_CPU_TIME of the master
process PCB is converted to standard VAX time units (by multi-
plying times the time interval value in global longword KER$GL_

4-56 Job and Process Creation and Deletion

10.

TIME_INTERVAL), and the quadword result is added to KER$GQ_
PREV_JOB_TIME.

The kernel procedures KER$CREATE_MESSAGE and KER$SEND
are used to send a job termination message to the job exit port, if
one was specified by the job’s creator.

If the current process is a subprocess and is deleting the master
process, the current process is made the master process; this allows
the KERSDELETE procedure to be called from the current process
to delete all the job’s objects.

The kernel loops through the job’s linked list of ports, pointed
to by the JCB$A_PORT_FLINK field of the JCB, and calls
KER$DELETE to delete each one.

If the program executed by the job is a dynamic program, as de-
termined by referencing the program description pointed to by the
JCB$A_PROGRAM field of the JCB, the program reference count
field, PRG$W_REF_COUNT, is decreased by 1 to indicate that a job
executing the program has been deleted. If the program descriptor
indicates a request has been received to unload the program on
completion, and if PRG$W_REF_COUNT indicates no more jobs are
executing it (a zero value), the internal subroutine KER$DELETE_
PROGRAM is called to remove the program from the system.

All job-created objects are deleted. The kernel walks the tables of
job objects, pointed to by the JCB$A_OBJECT _TABLE field of the
JCB, and deletes each object. The pool space occupied by the object
tables is freed, and the SO page containing the object base table is
freed. The object tables are described in Chapter 10.

The job’s PO page table and all its entries are freed. The internal
subroutine KER$FREE_P(0_SLOT, described in Chapter 9, is called
to free the PO slot containing the page table and the PO region and
slot allocation bitmaps.

The job’s process queue-listhead pool block, pointed to by field
JCB$A_PROCESS_QUEUES of the JCB, is freed with a call to
internal subroutine KER$FREE_POOL.

The job’s JCB is removed from the system job list and, if appropri-
ate, its bits in the KER$AW_CLASS_MASK array and the global
active summary, KER$GL_ACTIVE_SUMMARY, are cleared.

Finally, the SO page containing the JCB and the SO page containing
the PTX and the PCB are freed with calls to the internal subroutine
KER$FREE_REGION. A final branch is taken to the internal
subroutine KER$SCHEDULE_JOB to schedule the next job.

Job and Process Creation and Deletion 4-57

Chapter 5

Software Interrupts, Kernel
Synchronization,and Time Support

Software interrupts, synchronization, and time services are critical

to the operation of a real-time system. Software interrupts, which
invoke specific service routines, allow vital system functions to occur
asynchronously to the execution of jobs and processes. To maintain
the integrity and consistency of its internal data bases, the VAXELN
Kernel synchronizes its operations to enforce exclusive access to critical
data and code sections. In addition, the kernel maintains a system
clock and a timer mechanism and provides a set of procedures to
support time-based synchronization.

This chapter describes the kernel operations related to these topics:
¢ Software interrupts and their service routines are surveyed in
Section 5.1.

¢ The kernel’s internal synchronization techniques are described in
Section 5.2.

* The time support provided by the kernel is described in Section 5.3.

All three of these mechanisms depend to some degree on architecturally
defined vectors in the system control block (SCB). Figure 5-1 shows the
general layout of a VAX SCB. The first four blocks of vectors appear on
the architecturally defined first half-page of the SCB and are shared by
all VAX processors. The size and contents of the remainder of the SCB
vary with processor type.

Software Interrupts, Kernel Synchronization, and Time Support 5-1

In particular, the software interrupt vectors on the first page of
the SCB support the VAXELN services described in this chapter.
(Chapter 6 describes the role of the exception vectors in VAXELN
condition handling.)

Figure 5-1: General Layout of a VAX SCB

Exception Vectors

Processor Fault Vectors

Software Interrupt Vectors

Clock and Console Vectors

Processor-Specific Adapter
and Device Vectors

MLO-003225

5.1 Software Interrupts

The software interrupt mechanism supported by the VAX hardware
plays a key role in the kernel’s management of system events, such as
job and process scheduling and device I/0O. Software interrupt service
routines running at interrupt priority levels (IPLs) 2 through 8 perform
a number of the kernel’s most important functions.

This section describes how software interrupts are requested and
granted and summarizes their use by the kernel.

5-2 Software Interrupts, Kernel Synchronization, and Time Support

5.1.1 Software Interrupt Mechanism

A software interrupt is an interrupt requested by a write to the soft-
ware interrupt request register (SIRR) rather than through an inter-
rupt from an external device. The kernel requests a software interrupt
to invoke system functions as they are needed, without having to test
periodically whether each function must be performed.

The VAX interrupt microcode responds to software interrupt requests
as it does to hardware interrupts: it dispatches through the appropriate
SCB vector, which contains the address of the interrupt service routine
(ISR). The setting of the lowest two bits in the vector specifies whether
the interrupt will be serviced on the kernel or the interrupt stack.

The VAX architecture provides 15 vectors in the SCB for software in-
terrupts at IPLs 1 through 15. IPLs are assigned to software interrupt
services on the basis of two factors: their relative importance and their
need to synchronize access to shared data. A software interrupt at a
particular IPL is requested by writing that IPL into the SIRR (PR$_
SIRR). The kernel generally uses symbolic values and macros to re-
quest software interrupts. For example, to reschedule the system, the
kernel invokes the RESCHEDULE macro:

RESCHEDULE
mtpr #IPLSK _RESCHEDULE, #PR$_SIRR

Some hardware interrupt service routines, such as the interval timer
ISR, request software interrupts as well. In addition, the REI in-
struction requests IPL 2 software interrupts to deliver asynchronous
exceptions.

5.1.2 VAXELN Software Interrupt Service Routines

Table 5—-1 shows the software interrupt service routines used by the
kernel and its subsystems. None of these routines is described in
this section. Instead, as indicated in the table, the routines are dis-
cussed in the larger context of the kernel services they perform. For
example, the IPL 2 ISR plays a central role in the delivery of asyn-
chronous exceptions and is therefore discussed in Chapter 6, Condition
Handling.

Software Interrupts, Kernel Synchronization, and Time Support 5-3

VAXELN Software Interrupts and Service Routines

Service Routine

Table 5-1:

IPL Purpose Stack

9-15 Unused N/A

8 Servicing device queue Interrupt

7 Software timer Interrupt

6 Secondary processor Interrupt
service

5 Kernel debugger Interrupt

4 Job-level rescheduling Kernel

3 Unused N/A

2 Asynchronous exception Kernel

delivery

None

KER$DEVICE_SIGNAL in module SIGNALDEV.
When the KER$SIGNAL_DEVICE procedure

is called, the kernel places the device object in
the device queue and requests a software in-
terrupt at IPL 8. This service routine removes
device objects from the queue and unblocks the
processes waiting on them. See Section 11.3.2.

KER$SOFTWARE_TIMER in module
TIMERINT. The ISR for the hardware timer
requests this software interrupt when the first
entry in the timer queue has expired. The soft-
ware timer ISR removes expired entries from
the queue and unblocks the processes waiting
on them. Section 5.3.5 describes software timer
ISRs.

KER$SOFTWARE_AMP in module BIPORT.
This service routine provides fork dispatching
for KA800 interprocessor interrupts on closely
coupled symmetric multiprocessing systems.

KER$DEBUG_INTERRUPT in module
INITIAL. This service allows entry into the
kernel debugger by executing a Breakpoint
(BPT) instruction within the kernel. This soft-
ware interrupt can be requested by the console
or the SET SESSION/KERNEL command in the
local debugger.

KER$RESCHEDULE in module SCHEDJOB.
This service routine saves the hardware context
of the current process, then finds another job
and/or process to run. Process rescheduling
within a job is requested through an IPL 2
interrupt.

None
KER$AST_INTERRUPT in module ASTDELIVR.

This service routine delivers an exception
asynchronously into the current process. See
Section 6.5.

The kernel treats all software interrupts, except the asynchronous-
exception delivery and rescheduling interrupts, as systemwide events

5-4 Software Interrupts, Kernel Synchronization, and Time Support

that are serviced outside the context of a specific process. The
rescheduling interrupt is taken on the kernel stack of the current
process. The interrupt service routine immediately executes a SVPCTX
instruction, saving the process’s context and switching execution to
the interrupt stack. The asynchronous exception interrupt is the only
interrupt that is serviced in the context of a specific process.

5.2 Kernel Synchronization

Within the kernel, synchronization involves blocking all but one of two
or more events when their simultaneous occurrence might disrupt the
proper operation of the system. Most often, such synchronization is re-
quired to ensure the integrity of shared data, so that a single thread of
execution has exclusive access while reading or writing sensitive data
structures. At the level of job and process execution, synchronization
involves the use of kernel objects — areas, events, semaphores, and
ports — and the KER$WAIT and KER$SIGNAL procedures to synchro-
nize execution with real-time events and to control access to shared
data and critical regions of code. Chapter 11 is devoted solely to the
topic of job and process synchronization.

The kernel relies on a combination of the following software tech-
niques and VAX hardware features to synchronize access to shared
data structures:

* Interlocked instructions. These VAX instructions, such as INSQHI
and REMQHI, ADAWI, and BBSSI, synchronize multiproces-
sor access to shared queues, aligned words, and bit fields. See
Section 5.2.1.

¢ Elevated IPL. Elevating processor IPL on single-processor systems
blocks all further system activity that occurs at that IPL and below.
See Section 5.2.2.

* Multiprocessor spinlocks. On tightly coupled symmetric multipro-
cessing systems, elevated IPL is inadequate to synchronize access
to system structures. Spinlocks — special-purpose bits that repre-
sent specific system resources — are obtained with the interlocked
test-and-set instructions (for example, BBSSI) to enforce exclusive
access by a single processor. See Section 5.2.3.

Software Interrupts, Kernel Synchronization, and Time Support 5-5

Interprocessor interrupts. Occasionally, on tightly coupled symmet-
ric multiprocessing systems, one processor must inform another
processor of an event; this is a form of synchronization. The ker-
nel provides a mechanism to allow interprocessor synchronization
through interprocessor interrupts. See Section 5.2.4.

5.2.1 Interlocked Instructions

When a VAX interlocked instruction accesses a structure, it inhibits a
similar interlocked access to the same structure by any other processor
in the system. The VAX architecture provides the following interlocked
instructions:

ADAWI (Add Aligned Word, Interlocked)

BBCCI (Branch on Bit Clear and Clear, Interlocked)

BBSSI (Branch on Bit Set and Set, Interlocked)

INSQHI and INSQTI (Insert into Queue Head/Tail, Interlocked)
REMQHI and REMQTI (Remove from Queue Head/Tail, Interlocked)

These instructions are used throughout the kernel where a single
access to a shared structure is required. Here are some examples of
such usage:

The global value KER$GW_ERRSEQ), the error log entry sequence
number, is incremented with the ADAWI instruction.

Multiprocessor spinlocks (see Section 5.2.3) are obtained with the
BBSSI instruction and released with the BBCCI instruction.

System pools blocks are obtained from the list of free blocks with a
single REMQHI instruction and are returned with a single INSQTI
instruction.

5.2.2 Elevated IPL

The primary purpose for raising IPL is to block interrupts at the
selected IPL value and all lower values. The kernel uses specific IPL
values to synchronize access to certain structures.

5-6 Software Interrupts, Kernel Synchronization, and Time Support

The IPL, stored in the processor status longword (PSL) register bits
<20:16>, is altered by writing the desired IPL value to the privileged
register PR$_IPL. This change in IPL is usually accomplished with the
SETIPL macro:

.MACRO SETIPL NEWIPL
mtpr NEWIPL, #PRS_IPL
.ENDM SETIPL

This macro changes IPL to the value specified by NEWIPL. Other
macros are defined to set IPL to specific levels; for example, the
DISABLE_SWITCH macro sets IPL to 3, preventing delivery of the
IPL 2 interrupt, which enables one process to preempt another.

To synchronize successfully, IPL must be raised — but not lowered —
to the appropriate synchronization level. Lowering defeats any attempt
at synchronization and also runs the risk of a reserved operand fault
when an REI instruction is later executed (an REI instruction that
attempts to elevate IPL causes the fault).

Table 5-2 shows several IPLs that are used for synchronization within
the kernel.

Table 5-2: Common IPL Values Used by the Kernel for Synchronization

Value
Name (decimal) Meaning
IPL$K_KERNEL_DEBUG 31 Disable all interrupts.
IPL$K_POWER 30 Disable all interrupts.
IPL$K_INTERPROCESSOR 23 Block interprocessor interrupts.
IPL$K_SYNCHRONIZE 8 Synchronize access to kernel data struc-

tures.

IPL$K_TIMER 7 Block software timer software interrupts.
IPL$K_RESCHEDULE 4 Block job rescheduling.
IPL$K_DISABLE_SWITCH 3 Block process context switching.
IPL$K_AST LEVEL 2 Block asynchronous exception software

interrupts.

The most common instances of IPL synchronization are the uses of
IPL$K_DISABLE_SWITCH and IPL$K_SYNCHRONIZE. The kernel’s
procedure-dispatching code (described in Section 8.2) raises IPL to
IPL$K_DISABLE_SWITCH before branching to the kernel procedure

Software Interrupts, Kernel Synchronization, and Time Support 5-7

code. Raising IPL to this level prevents the delivery of the IPL 2 in-
terrupt, which initiates a context switch to preempt a process. Process
switching within a job must be inhibited during execution of most ker-
nel procedures, because another process, which shares PO address space
with the current process, could delete or corrupt memory required for
the execution of the procedure.

IPL$K_SYNCHRONIZE (8) is the IPL at which the device and timer
queues are serviced. Before most kernel data structures are accessed
(for example, the scheduler database), IPL must be raised to this level.
By raising IPL to 8, all other processes that might access the same
systemwide data structure are blocked from execution until IPL is
lowered. While the processor is executing at IPL 8, certain systemwide
events, such as scheduling and timer and device queue servicing,

are blocked. More important operations, however, such as hardware
interrupt servicing, can continue.

Within the kernel, IPL is elevated to IPL$K_SYNCHRONIZE with the
SYNCHRONIZE macro:

.MACRO SYNCHRONIZE
setipl #IPL$K_SYNCHRONIZE
.ENDM SYNCHRONIZE

The SETIPL macro call within SYNCHRONIZE generates the MTPR
instruction that writes IPL 8 to the PR$_IPL register.

5.2.3 Spinlocks

In a tightly coupled symmetric multiprocessing system, each processor
has its own interrupt priority level, independent of the others. On
these systems, then, raising IPL ensures synchronization on a single
processor but not across the entire system. Therefore, the kernel
employs a mechanism called the spinlock to provide synchronization on
multiprocessor systems. Anywhere the kernel synchronizes by raising
IPL on a single-processor system, it must also acquire a spinlock on a
multiprocessor system.

A spinlock is a bit that represents a system resource or critical section
of code. When the bit is clear, the resource or code section is available.
To acquire the lock, a processor sets the bit. When another processor
finds the bit set, it loops — spins — on the lock bit until the lock’s
owner releases it by clearing the bit; the other process can now acquire
the lock and access the resource.

5-8 Software Interrupts, Kernel Synchronization, and Time Support

The bits that constitute the kernel’s spinlocks reside in a single
longword in the kernel data block, KER$GL_MULTIPROCESSOR_
LOCK. Table 5-3 shows the spinlocks currently defined in KER$GL_
MULTIPROCESSOR_LOCK and the resources they protect.

Table 5-3: Kernel Spinlocks

Bit
Spinlock Position Function
KER$V_GENERAL 0 Protects most kernel resources, such as the sched-
uler and memory management databases.
KER$V_BUGCHECK 1 Allows only one processor to bring down the system
during a fatal system bugcheck.
KER$V_CREATE_DEVICE 2 Protects the device database during device creation
by KER$CREATE_DEVICE.
KER$V_VIRT _CONSOLE 3 Ensures that a processor has exclusive access to

the virtual console.

In the kernel, spinlocks are usually acquired by use of the LOCK
and SEIZE macros. The LOCK macro normally appears where IPL
would be raised to IPLSK_SYNCHRONIZE and, in fact, performs that
operation as well:

.MACRO LOCK LOCK_NAME
synchronize
seize LOCK_NAME
.ENDM SYNCHRONIZE

The call to the SYNCHRONIZE macro raises IPL to IPL$K_
SYNCHRONIZE on the current processor. The call to the SEIZE macro
then generates the code to acquire the specified spinlock.

The SEIZE macro is conditionalized to generate spinlock instructions
only for multiprocessing versions of the kernel; therefore, on single-
processor systems, synchronization remains a matter of raising IPL to
IPL$K_SYNCHRONIZE. The SEIZE macro uses the BBSSI test-and-
set instruction to acquire the specified spinlock. If the spinlock bit is
clear, the BBSSI instruction sets it to acquire the lock, and execution
continues with the next instruction. If the bit is already set, meaning
that the lock is in use, the BBSSI instruction is reexecuted. Thus this
call to the SEIZE macro —

SEIZE LOCK=GENERAL

— would generate code like this:

Software Interrupts, Kernel Synchronization, and Time Support 5-9

10$: BBSSI #KER$V_GENERAL, W*KER$GL_MULTIPROCESSOR_LOCK, 10$

NEXT_INSTRUCTION:

A spinlock is relinquished with the RELEASE macro. Like the SEIZE
macro, RELEASE is conditionalized to generate code only for multipro-
cessing versions of the kernel. For those systems, RELEASE generates
the requisite BBCCI instruction to clear the specified spinlock bit.
Since RELEASE is called only after a call to SEIZE, the processor
should not need to spin to clear the lock bit.

The UNLOCK macro is the complement of the LOCK macro — it
relinquishes the previously acquired spinlock and lowers IPL from
IPL$K_SYNCHRONIZE to IPL$K_DISABLE_SWITCH:

.MACRO UNLOCK LOCK_NAME
release LOCK_NAME
disable switch

.ENDM SYNCHRONIZE

UNLOCK is called only from kernel code that was executing at IPL$K_
DISABLE_SWITCH before calling the LOCK macro. This is the case
for the majority of kernel procedures, which execute at least at IPL 3.
Kernel code that wishes to relinquish a lock without affecting IPL calls
the RELEASE macro directly.

5.2.4 Interprocessor Interrupts

On tightly coupled symmetric multiprocessing systems, the kernel
provides a way for one processor to synchronize its activities with one
or more other processors by requesting an interprocessor interrupt.
Interprocessor interrupts are generated on the VAX 6000 and VAX 8800
series processors at IPL 23.

Interprocessor interrupts are generated by the INTERRUPT _CPU
and INTERRUPT_ALL_CPUS macros (in modules MP8800HDR and
MP6CCHDR). An argument to the INTERRUPT_CPU macro specifies
the number of the processor to be interrupted. Both macros take

an argument that specifies the reason for the interrupt. The reason
corresponds to a bit in the global bit field KER$AB_REASON in the
kernel data block. Table 5—4 shows the reason bits defined in KER$AB
REASON and describes their meanings to the processors that receive
the interrupt.

5-10 Software Interrupts, Kernel Synchronization, and Time Support

Table 54:

Interprocessor Interrupts

Reason

Bit
Position Meaning

KER$V_JOB_SCHEDULE 0 Initiate job scheduling. This interprocessor

interrupt is requested by the scheduler when
it discovers that a job running on another
processor requires preemption.

KER$V_FLUSH_TB 1 Flush the entire address translation buffer.

This interprocessor interrupt is requested by
kernel memory allocation routines whenever
system page tables entries are altered. The
interrupt informs all processors that their
translation buffers may be invalid.

KER$V_CROSS_JOB_SIGNAL 2 Request an IPL 2 interrupt to deliver a debug-

ger halt signal to a process. This interprocessor
interrupt is requested by the debugger when

it discovers that a user has requested that a
process running on another processor be halted.
The IPL 2 interrupt on the target processor
allows the halt request to be delivered as an
asynchronous exception.

KER$V_REQUEST_SHUTDOWN 3 Perform an orderly processor shut-down. This

interprocessor interrupt is requested by a
processor undergoing a fatal system bugcheck
to bring down the other processors in the
system.

The macros set the appropriate bit in the KER$AB_REASON mask
and then request the interprocessor interrupt. The interrupt ser-
vice routine, KER$INTERPROCESSOR_INTERRUPT (in modules
GENMP8800 and GEN6CC), executing at IPL 23 on the interrupt
stack, scans the reason mask until it finds the set reason bit. It then
clears the bit, performs the requested action, and dismisses the inter-
rupt.

5.3 Time Support

Support for activities that must occur at an absolute date and time
or must measure an interval of time is implemented in both the VAX
hardware and in the VAXELN Kernel. This chapter describes the
kernel’s support for these time-based operations.

Software Interrupts, Kernel Synchronization, and Time Support 5-11

A hardware component called the interval clock interrupts the pro-
cessor at regular intervals. The kernel uses this clock to keep time
and to service time-dependent wait requests. It is the key to all time-
dependent activities and is described in Section 5.3.1.

A single time is maintained under VAXELN, the current date and time
(the system time). Another time, the time elapsed since the system was
bootstrapped (the system uptime) is fabricated and returned to users,
such as the debugger and the display utility, on request.

Keeping time and servicing time-dependent requests require both a
hardware interrupt service routine (ISR) for the interval clock and a
software interrupt service routine. The hardware ISR, described in
Section 5.3.4, maintains the system time and requests the software
timer interrupt as necessary. The software timer ISR, described in
Section 5.3.5, supports time-dependent waits by examining a time-
ordered queue of requests and unblocking their associated processes as
their expiration times occur.

The kernel also provides a number of procedures to service time-related
requests: KERSET_TIME, KERGET_TIME, KER$GET_UPTIME.
These procedures are described in Section 5.3.6.

5.3.1 Interval Clock

The VAX hardware clocks are updated regularly by timing circuitry.
Under VAXELN, only the interval clock is used to maintain the system
time; no use is made of the internal time-of-day clock.

All VAX processors implement an interval clock, which can interrupt
at interrupt priority level (IPL) 22 or 24 at intervals of at least ten
milliseconds. In processors that employ the VAX subset architecture,
this timer is implemented as a single bit, in the internal register PR$_
ICCS, whose setting enables interrupts every ten milliseconds. The
MicroVAX, VAXstation, and VAX 6000 series processors implement
this minimum interval clock and can therefore interrupt only at ten-
millisecond intervals.

On VAX processors that implement the full VAX architecture, such
as the VAX-11/750 and VAX 8820, two additional processor registers,
PR$_ICR and PR$_NICR, allow further control of the interval clock.

5-12 Software Interrupts, Kernel Synchronization, and Time Support

The interval clock is updated at one-microsecond intervals with an
accuracy of at least 0.01 percent (an error of fewer than nine seconds
per day). The frequency at which the interval clock causes an interrupt
is determined by the value in PR$_NICR.

In the full implementation, the three interval clock registers are used
as follows:

¢ The interval clock control/status register (PR$_ICCS) controls the
interrupt status of the interval clock. This register is set at system
initialization, then reset by the interval clock ISR to indicate that
the interrupt has been serviced and to reenable interrupts (see
Section 5.3.4).

* The next interval count register (PR$_NICR) defines how often
the interval clock will cause a hardware interrupt—a clock “tick.”
At system initialization of processors that support intervals other
than ten milliseconds, this processor register is set to the value
specified by the user as the Time interval entry on the System
Characteristics Menu. This interval defines the minimum gran-
ularity for time-related operations. For example, the smallest
amount of time a process can wait is one clock tick — the time
interval.

The interval value is stored, in units of 100 nanoseconds, in the
kernel parameter KER$GL_TIME_INTERVAL. Before the kernel
initializes PR$_NICR, it converts this value to microseconds. The
default interval value is —10000, which specifies an interval clock
inte.rupt period of ten milliseconds (10,000 microseconds). On
subset processors, attempts to set PR$_NICR are ignored; the clock
will interrupt only at ten-millisecond intervals.

* Every microsecond, the hardware increments the interval count
register (PR$_ICR). When the interval clock is initialized, the
processor copies the negated value of PR$_NICR to PR$_ICR. As
each microsecond passes, the value of PR$_ICR is incremented from
the PR$_NICR value toward zero. When PR$_ICR becomes zero,
the register overflows, with the following results:

1. The hardware copies the contents of PR$_NICR into PR$_ICR
to define the next interval.

2. The hardware sets a bit in PR$_ICCS to indicate the overflow
condition. This causes an interval clock interrupt.

Software Interrupts, Kernel Synchronization, and Time Support 5-13

In VAX subset processors, which contain only the single-bit version of
PR$_ICCS, the value written to PR$_NICR during system initialization
is ignored. Only the original setting and subsequent resetting of the
single interrupt-enable bit in PR$_ICCS to enable ten-millisecond
interrupts is significant.

The IPL at which the hardware interrupt occurs is either 22 or 24,
depending on the processor type. Earlier VAX processors, such as the
VAX-11/750, use IPL 24. The VAX architecture now defines 22 as the
IPL associated with the interval clock.

5.3.2 Timekeeping Under VAXELN

Timekeeping under VAXELN involves maintaining the system time
and servicing time-dependent waits. The system time is stored in the
64-bit global value KER$GQ_SYSTEM_TIME. This value represents
the number of 100-nanosecond intervals since 00:00 hours, November
17, 1858, the base time for the Smithsonian Institution astronomical
calendar. KER$GQ_SYSTEM_TIME is updated, by default, every ten
milliseconds by the interval clock ISR. On processors that implement
the full interval clock, the interrupt interval can be set by the user in
the System Builder (see Section 5.3.1).

Because the value of KER$GQ _SYSTEM_TIME is set to 0 when the
kernel is assembled and is not changed by system initialization, the
system time on VAXELN systems begins at the Smithsonian base time.
The KER$SET_TIME procedure allows the system time to be set under
program control to a correct value, as described in Section 5.3.6.1.

The kernel maintains other global values for time-related operations.
These are shown in Table 5-5. (All the values except KER$GL_TIME_
INTERVAL are defined in module SYSTEMDAT. The time interval is
defined in module PARAMETER.)

Table 5-5: Time-Related Kernel Values

Value

Use

KER$GB_TIME_SET A flag to indicate that the system time has been set. This

flag is set the first time the system time is set. When the
flag is clear, the KER$GET_TIME procedure warns its
callers that they are receiving the uncorrected base system
time.

5-14 Software Interrupts, Kernel Synchronization, and Time Support

Table 5-5 (Cont.): Time-Related Kernel Values
Value Use

KER$GQ CLOCK_OFFSET An accumulator for all changes to the system time.
Stored in units of 100 nanoseconds, this value allows the
KER$GET_UPTIME procedure to calculate system uptime
based on the system time.

KER$GQ_IDLE_TIME An array that accumulates, in 100-nanosecond intervals, the
idle time for each processor.
KER$GQ_START_TIME The time at which system time was last set.
KER$GQ_SYSTEM_TIME The absolute system time in 100-nanosecond intervals.
KER$GQ TIME_QUEUE Listhead of the timer queue, which contains the timer
wait control blocks representing timed process waits. See
Section 5.3.3.
KER$GL_TIME_INTERVAL The interval clock interrupt period in units of 100 nanosec-

onds. This value is based on the Interval time entry on
the System Characteristics Menu. The value entered there
in units of microseconds is multiplied by 10 to generate the
value for KER$GL_TIME_INTERVAL. The default value is
100,000 nanosecond intervals, or 10 milliseconds.

This value is stored in 100-nanosecond units so that the
interval clock ISR can then update the system time by
adding KER$GL_TIME_INTERVAL to KER$GQ_SYSTEM_
TIME, which uses the same units.

5.3.3 Timer Queue and Timer Wait Control Blocks

The timer queue, central to the processing of timed waits, is a list of
timer wait control blocks (WCBs), each containing a quadword time
value representing the absolute system time at which a process wait
expires. The list is ordered by these time values; the most imminent
time comes first, the most distant comes last.

The listhead for this queue resides at KER$GQ_TIME_QUEUE. The
listhead is actually the first eight bytes of a dummy timer WCB. (The
structure of the WCB is described fully in Section 11.1.1.) Several
fields in the WCB relate to its use in the timer queue. The fields
WCB$A_WAIT_FLINK and WCB$A_WAIT_BLINK allow the WCB to
be linked into the queue. The field WCB$Q_TIME contains the time
value representing the system time at which the wait expires. The
second bit in the WCB$B_WAIT field (WCB$V_WAIT_DELTA) signifies

Software Interrupts, Kernel Synchronization, and Time Support 5-15

how the timed wait was specified to the KER$WAIT procedure. If the
bit is set, then the wait time was specified as a interval (relative or
delta) time. If the bit is clear, an absolute time was specified. The
setting of the WCB$V_WAIT_DELTA bit allows the KER$SET_TIME
procedure to adjust only the interval wait times of processes if the
system time is reset.

As shown in Figure 52, the dummy WCB located at KER$GQ_TIME_
QUEUE acts as the first WCB in the timer queue, and its forward
and backward links comprise the actual listhead for the queue. Its
WCB$Q_TIME field is permanently set to —1. This value is used

by the KER$WAIT procedure for comparison when it inserts timer
WCBs into the queue. Because real timer WCBs contain absolute time
values (that is, positive values), they are inserted into the queue fol-
lowing the dummy WCB. The negative value of WCB$Q_TIME in the
dummy WCB also allows both the hardware and software timer ISRs
to determine quickly that the timer queue is empty.

If the timer queue is not empty, the interval timer ISR, described in
Section 5.3.4, checks to see whether the time value in the first real
WCB in the queue is less than or equal to the value of the system time.
If so, the ISR requests a software interrupt to awaken the software
timer ISR, described in Section 5.3.5. When it runs, this ISR walks the
timer queue and unblocks every process whose wait has expired.

5.3.4 Interval Clock Interrupt Service Routine

The interval clock interrupt service routine, KERSHARDWARE_TIMER
in module TIMERINT, services the hardware interrupt generated by
the interval clock when the time defined in KER$GL_TIME_INTERVAL
expires. On VAX-11/725, 730, and 750 targets this is an IPL 24 inter-
rupt; on others, it is an IPL 22 interrupt.

The interval clock ISR has three major functions:

¢ Updating the system time
¢ Performing process and idle-time accounting
¢ Checking the timer queue for expired process waits

5-16 Software Interrupts, Kernel Synchronization, and Time Support

Figure 5-2: Timer Queue

Dummy WCB

A

WCBS$A_WAIT_FLINK

WCB$A_WAIT_BLINK

WCBS$Q_TIME
(Equals -1)

WCBS$A_WAIT_FLINK

WCB$A_WAIT_BLINK

WCB$Q_TIME
A<B<C

Y

WCB$A_WAIT_FLINK

A

WCB$A_WAIT_BLINK

WCB$Q_TIME
B<C<D

WCB$A_WAIT_FLINK

WCB$A_WAIT_BLINK

WCB$Q_TIME
C<D

:KER$GQ_TIME_QUEUE

MLO-003226

On tightly coupled symmetric multiprocessing systems, this interrupt
routine also maintains “watchdog timers,” which allow one processor to
monitor the status of another processor in the system. If a clock tick
has expired and the watched processor has not updated a counter, a
fatal system bugcheck is taken to bring down the entire system.

Software Interrupts, Kernel Synchronization, and Time Support 5-17

On all systems, the task of maintaining the system time and checking
the timer queue belongs to the single or primary processor alone.
KER$HARDWARE_TIMER executes as follows:

1.

2.

The interval clock CSR, PR$_ICCS, is reset to indicate that the
interrupt has been serviced and to reenable the timer.

The value of KER$GQ_SYSTEM_TIME is updated by adding to it
the value of KER$GL_TIME_INTERVAL.

The address of the first entry in the timer queue is obtained. If the
queue is empty, this is the address of the dummy timer WCB.

The updated system time is compared to the time value in the first
timer WCB.

If the system time is less than or equal to the time in the WCB,
then that first element has expired (this is never the case when the
queue is empty), and a software interrupt is requested by writing
IPL$K_TIMER (7) to PR$_SIRR. When IPL drops below IPL$K_
TIMER, the software timer ISR runs to service the timer queue.

The interrupt-stack field in the PSL at the time of the interrupt
is checked. If it is set, meaning that the system was executing
outside of process context, the clock interval is charged against
the processor’s idle time by adding KER$GL_TIME_INTERVAL to
KER$GQ_IDLE_TIME. (On tightly coupled symmetric multipro-
cessing systems, KER$GQ_IDLE_TIME is an array indexed by the
processor number; therefore, KER$GL_TIME_INTERVAL is added
to the appropriate element of KER$GQ_IDLE_TIME.)

If the processor was in process context at the time of the inter-
rupt, the clock tick is charged against the interrupted process by
incrementing the value of PCB$L_CPU_TIME in the current PCB.

The interrupt is dismissed with the REI instruction.

5.3.5 Software Timer Interrupt Service Routine

The software time interrupt service routine, KER$SOFTWARE_TIMER
in module TIMERINT, is invoked through the IPLJK_TIMER software
interrupt. The software timer interrupt is requested by the interval
clock hardware ISR when it finds that the entry in the timer queue has
expired.

5-18 Software Interrupts, Kernel Synchronization, and Time Support

KER$SOFTWARE_TIMER services the timer queue as follows:

1. The LOCK macro is executed to ensure exclusive access to the
timer queue and other system data.

2. The address of the first WCB in the timer queue is obtained. If the
queue is empty, this is the address of the dummy timer WCB.

3. The system time, KER$GQ _SYSTEM_TIME, is compared to the
value of WCB$Q_TIME in the timer WCB.

If the system time is greater than or equal to the time in the WCB,
the internal subroutine KER$UNWALIT is called to unblock the pro-
cess that owns the expired WCB. KER$UNWAIT removes the WCB
from the head of the timer queue and places the associated process
into the ready state, regardless of the state of other wait conditions
it may have specified. If the waiting process had specified a wait
result variable, it is set to 0 to signify that the wait has timed out.

4. If the WCB has not expired, the interrupt is dismissed. Otherwise,
control loops to step 2-to test the next queue entry. The next entry
will always be at the head of the queue, because KERSUNWAIT
removes the expired entries from the head of the queue.

The role of KER$WAIT in placing WCBs in the timer queue is described
in Section 11.2, and the function of KER$UNWAIT is described in
Section 11.3.3.3.

5.3.6 Time-Related Kernel Procedures

The kernel provides three procedures to allow callers to set the system
time and to obtain the system time and the time that the system has
been operating (uptime). The following sections describe these proce-
dures, KERSET_TIME, KERGET_TIME, and KER$GET_UPTIME,
all of which reside in module TIME.

The KER$WAIT_ANY and KER$WAIT_ALL procedures allow a process
to wait until a specified date and time or for a specified interval. These
procedures are described in Chapter 11.

Software Interrupts, Kernel Synchronization, and Time Support 5-19

5.3.6.1 KERS$SET_TIME

The procedure KER$SET TIME executes in kernel mode and allows
its caller to replace the value of KER$GQ _SYSTEM_TIME with a
specified 64-bit time value. The caller can create the binary time value
before calling KER$SET_TIME by using the run-time library function
ELN$TIME_VALUE to convert an ASCII time string. KER$SET_TIME
is also responsible for adjusting the time values in the WCBs in the
timer queue if they specify a wait for an interval time.

KER$SET TIME expects two arguments: the address of an optional
status value and the address of a 64-bit variable containing the new
system time. The procedure executes as follows:

1

The current system time, KER$GQ_SYSTEM_TIME, is subtracted
from the time specified by the caller, and the difference is saved.

The difference between the specified time and the current time
is used to update the wait time values in timer WCBs that were
specified as relative waits.

The time difference is negated and added to the quadword
KER$GQ _CLOCK_OFFSET. Before the correction to the system
time is added to KER$GQ_CLOCK_OFFSET, the LOCK macro

is executed to ensure the procedure’s exclusive access to system
time values and the timer queue. (The corrections to the system
time are accumulated in KER$GQ _CLOCK_OFFSET so that the
KER$GET_UPTIME procedure can calculate the system’s elapsed
time based on the current time; see Section 5.3.6.3.)

The caller’s time value is copied to KER$GQ_SYSTEM_TIME,
effectively resetting the system time to the new value.

The caller’s time value is copied to KER$GQ_START_TIME, record-
ing the time at which the system time was last set.

The timer queue is scanned for timer WCBs with the WCB$V_
WAIT_DELTA bit set in WCB$B_WAIT. For each one, the time
difference calculated earlier is added to the time value in WCB$Q_
TIME.

The timer queue is reordered to correct any discrepancies created
by the adjustments to the timer WCB time values.

IPL is restored, the spinlock is released, and KER$_SUCCESS
status is returned to the caller.

5-20 Software Interrupts, Kernel Synchronization, and Time Support

The time values in timer WCBs are adjusted so that changes in system
time do not affect the expiration times of interval waits. Adjustment is
ultimately required because the values for timed waits — both absolute
or relative — are stored as absolute system times. For relative waits,
this absolute time is calculated in the KER$WAIT procedure by adding
the specified relative time to the current system time. The result is
entered into the WCB$Q_TIME field of the timer WCB, which is then
inserted into the appropriate position in the timer queue. KER$SET_
TIME, however, makes no adjustments to waits specified as absolute
times. These waits are left to expire at their specified system times.

For example, if a process enters a five-minute wait one minute after the
system is booted, but before the time is reset from the base time (the
time would be 17-NOV-1858 00:01:00.00), its absolute expiration time
would be recorded in WCB$Q _TIME as 17-NOV-1858 00:06:00.00, that
is, five minutes after the time at which the wait was requested. If, one
minute later, another process sets the system time to a more relevant
value, such as 15—-0CT-1989 08:20:00.00, the time value for the first
process must be adjusted to preserve the remaining portion of its wait.
Otherwise, its wait would expire immediately at the next clock tick, not
in the expected four minutes.

KER$SET_TIME calculates the necessary adjustment by subtracting
the value of KER$GQ_SYSTEM_TIME at the time of the call from the
new system time specified, yielding, in this case, a difference of well
over a century. Adding this value to the absolute time in WCB$Q_
TIME would result in a new absolute expiration time of 08:24:00.00
15-0OCT-1989, showing that four minutes remain in the five-minute
wait.

This adjustment mechanism works the same way with less extreme
adjustments to the system time. The adjustment preserves the rela-
tionship of an interval wait’s expiration time to the new system time.
If the system time were to be set back by five minutes, the subtraction
from KER$GQ_SYSTEM_TIME would yield a difference of negative
five minutes. Adding this negative offset to the values in the relative
timer WCBs would adjust their timeout values back by the required
five minutes.

Software Interrupts, Kernel Synchronization, and Time Support 5-21

5.3.6.2 KERS$GET_TIME

The procedure KER$GET_TIME executes in the caller’s mode and
returns the 64-bit value KER$GQ_SYSTEM_TIME. The caller can then
use the run-time library routine ELN$TIME_STRING to convert the
binary time value to an ASCII string.

KER$GET_TIME expects two arguments: the address of an optional
status value and the address of a 64-bit variable to receive the system
time. The procedure executes by simply copying the value of KER$GQ_
SYSTEM_TIME to the caller’s quadword variable.

The status returned by the procedure depends on the setting of the low
bit in the global value KER$GB_TIME_SET. If the bit is set, then the
system time has been set and KER$_SUCCESS is returned. If The bit
is clear, then system time has not been set. To warn the caller of this,
the alternate success status KER$_TIME_NOT_SET is returned.

5.3.6.3 KERS$GET_UPTIME

The procedure KER$GET _UPTIME executes in kernel mode and re-
turns a 64-bit interval time value representing the time since the
system was booted. The caller can then use the run-time library rou-
tine ELN$TIME_STRING to convert the binary time value to an ASCII
string.

KER$GET _UPTIME expects two arguments: the address of an op-
tional status value and the address of a 64-bit variable to receive
the system uptime. Its operation depends on the value of KER$GQ_
CLOCK_OFFSET, which is updated by each call to the KER$SET_
TIME procedure to keep a running tally of adjustments to the system
time.

To calculate the system uptime, KERSGET_UPTIME executes as fol-
lows:

1. The values of KER$GQ_SYSTEM_TIME and KER$GQ_CLOCK_
OFFSET are added, yielding the actual uptime for the system.

2. The uptime value is negated and returned to the caller. Negating
the uptime value transforms it to interval time format. This neg-
ative value can then be passed to the run-time library function
ELN$TIME_STRING.

5-22 Software Interrupts, Kernel Synchronization, and Time Support

If the system time has not been set from the base time, represented
in KER$GQ_SYSTEM_TIME as 0, KER$GQ_CLOCK_OFFSET will
always be 0. Adding the offset to the system time, then, will simply
yield the number of 100-nanosecond intervals that have passed since
the system was initialized.

If the system time has been reset from the base time, KER$GQ_
CLOCK_OFFSET contains the negative value of all the adjustments
made to the system time. By adding this negative value to the current
system time, KER$GET UPTIME effectively rolls back any changes to
the system time to yield the number of 100-nanosecond intervals that
have transpired since the system was initialized.

Software Interrupts, Kernel Synchronization, and Time Support 5-23

Chapter 6

Condition Handling

Conditions are errors or anomalies detected by hardware and software
and reported by the system software to a condition handler defined by
the user. The VAXELN Kernel and its counterpart under the VMS op-
erating system both employ the VAX condition-handling facility as set
out in the VAX Procedure Calling and Condition Handling Standard.
There are differences between the two implementations, but their
functions parallel each other closely.

In particular, the VAX condition-handling facility defines the following
aspects of condition handling:

¢ How a condition handler is declared and canceled
® How a condition handler is located and invoked
* How a condition handler may respond to a condition

The facility also provides that the same condition handlers be called in
response to conditions detected by both hardware and software. This
mechanism, called uniform condition dispatching, allows application
software to centralize its handling of all errors in a single condition-
handling procedure.

VAXELN extends this condition-dispatching mechanism to include
software-generated conditions called asynchronous exceptions. An
asynchronous exception allows one process to interrupt another asyn-
chronously to the latter process’s execution. The VAX hardware’s
support for asynchronous system traps (ASTs) and the VAXELN
Kernel’s condition-dispatching mechanism work together to deliver
asynchronous exceptions.

Condition Handling 6-1

The following sections describe the implementation of the VAX
condition-handling facility within the VAXELN Kernel:

Section 6.1 defines VAX conditions.

Section 6.2 describes the data structures involved in dispatching
and handling conditions.

Section 6.3 describes how conditions detected by hardware are
prepared for dispatching.

Section 6.4 describes how conditions detected by software are
prepared for dispatching.

Section 6.5 describes how asynchronous exception conditions are
generated and prepared for dispatching.

Section 6.6 describes the uniform condition-dispatching mechanism;
namely, how the kernel locates and calls a condition handler and
how it deals with handled and unhandled conditions.

Section 6.7 describes the options available to a condition handler,
including unwinding the stack to change the flow of execution.

6.1 Conditions Detected by Hardware and Software

Conditions fall into two categories, based on whether the condition is
detected by the hardware/microcode or by software:

Exception conditions. An exception condition is the processor’s
response to an anomaly or error it encounters while executing an
instruction. The hardware/microcode responds by changing the
flow of execution, directing it to an exception service routine. Each
exception routine is identified by its own longword vector, defined
by the VAX architecture, in the SCB.

An exception condition may be classified as a trap, a fault, or an
abort:

— A trap is an exception condition that occurs at the end of the
instruction that causes the error. The PC pushed onto the stack
by the hardware/microcode exception sequence is the address
of the instruction following the offending instruction. Example:
integer divide by zero.

6-2 Condition Handling

— A fault is an exception condition that occurs during an instruc-
tion and leaves registers and memory in a consistent state.
The PC pushed onto the stack during the exception sequence
is the address of the instruction that caused the error, so that
eliminating the fault and restarting the instruction is possible.
Example: access control violation.

— An abort is an exception condition that occurs during an in-
struction and potentially leaves registers and memory in an
inconsistent state, so that the instruction cannot be safely
restarted, completed, or undone. Example: kernel stack not
valid.

These hardware-detected errors occur synchronously, that is, at
predictable points in the flow of process execution. The VAXELN
Kernel recognizes another class of exception, called asynchronous
exception conditions. Asynchronous exception conditions are gen-
erated outside the flow of process execution. These exceptions are
in fact requested by software and are delivered asynchronously
to a process through the cooperation of the kernel and the VAX
hardware’s support for ASTs, as described in Section 6.5.

* Software conditions. A software condition is an error or anomaly
detected by the system or a user program and treated in a particu-
lar way. When software detects such an error, it transforms it into
a software condition by calling the kernel procedure KER$RAISE_
EXCEPTION. (Programs can also call the run-time library VMS-
emulation routines LIB$SIGNAL and LIB$STOP, which then call
KER$RAISE_EXCEPTION.)

The description of the kernel’s processing of software conditions
begins with Section 6.4.

6.2 Data Structures for Condition Handling

The structures central to the VAX condition-handling facility are de-
fined by the VAX Procedure Calling and Condition Handling Standard.
This section describes the following structures:

* The call frame. This structure, built by the CALLG and CALLS
instructions, records information about a called procedure that al-
lows the kernel to trace the path of procedure calls down a process’s
stack.

Condition Handling 6-3

¢ The condition-handler argument list. This structure, built by the
kernel, is passed to a condition handler to enable it to locate the
signal and mechanism arrays, which contain information about the
condition.

¢ The signal array. This structure, built by the kernel, is passed to
a condition handler and describes the condition — signal — that
resulted in the calling of the handler.

¢ The mechanism array. This structure, built by the kernel, is passed
to a condition handler and records information about the kernel’s
search for a condition handler.

This set of data structures applies to the VAX condition-handling
facility as a whole. Another set of data structures exists to support
the delivery of asynchronous exception conditions to a process. These
structures are described separately in Section 6.5.1.

6.2.1 Call Frames

A VAX call frame saves information about the caller’s state to be
restored when the called procedure completes. The call frame also con-
tains information that allows the kernel to trace the calling hierarchy
down the stack.

Figure 6—1 shows the structure of the VAX call frame created on

the stack by the CALLG and CALLS instructions. The figure also
shows the location of the argument list transmitted on the stack by the
CALLS instruction. Table 6-1 describes the fields in the frame. The
symbols in the second column are defined in the $SFDEF macro in the
VMS STARLET macro library.

The called procedure’s local stack environment begins on top of its

call frame. The value of the frame pointer (FP) points to the first
longword at the top of the call frame. When an exception or software
condition occurs, the kernel’s condition-dispatching logic searches down
the stack, through successive call frames, until it locates a frame that
has established a condition handler by storing its address in that first
longword in the call frame. The kernel is able to locate lower frames by
using the saved FP value in one call frame to locate the top of the next
lowest frame on the stack.

6—4 Condition Handling

Figure 6—1: VAX Call Frame for CALLG and CALLS
3130 29 28 27 16 15 54 3 0
p
Condition Handler Address (initially 0) l<«—FP=SP
SPA| S | 0 |Maskbits <11:0>| PSW bits <15:5> 0
Saved AP
Saved FP
Call
Frame< Saved PC
€—FP+20
Saved Registers
(indicated in mask)
L 0-3 Byte Stack Alignment Block (as indicated by SPA)
>
0 Arg. Count j«—AP
CALLS <
Only Arguments
(as indicated by argument count)
\
MLO-003227

Condition Handling 6-§

Table 6-1:

Structure of a VAX Call Frame

Field

Symbols

Meaning

Condition handler
address

SPA (stack pointer
alignment) bits

S bit

Mask bits

PSW bits

Saved AP

Saved FP

Saved PC

SF$A_HANDLER

SF$V_STACKOFFS
SF$S_STACKOFFS

SF$V_CALLS
SF$S_CALLS

SF$W_SAVE_MASK
SF$V_SAVE_MASK
SF$S_SAVE_MASK

SF$W_SAVE_PSW

SF$L_SAVE_AP

SF$L_SAVE_FP

SF$L_SAVE_PC

6—6 Condition Handling

The address of the condition handler estab-
lished for the frame. The CALL instructions
set this field to 0 and the frame pointer to
point to this longword. A condition handler is
established when its address is written to this
field.

The low two bits of the stack pointer (SP)
value at the time of the CALL. This value is
subtracted from SP by the CALL instructions
to align the stack on a longword boundary.

The bit that indicates how the call frame was
created. The bit is set if CALLS was executed,
the bit is clear if CALLG was executed. If the
S bit is set, the RET instruction clears the
CALLS argument list from the stack.

The lowest twelve bits of the procedure entry
mask, indicating which registers were saved on
the stack on entry to the procedure.

The high 11 bits of the processor status word
(PSW), indicating the settings of the integer
overflow (IV), floating underflow (FU), and
decimal overflow (DV) trap-enable bits at the
time of the CALL.

The value of the argument pointer at the time
of the CALL.

The value of the frame pointer at the time
of the call. This value defines the calling
procedure’s stack environment and is used by
the condition-dispatching logic to scan back
through frames on the stack.

The value of the program counter at the time of
the CALL. This is the address of the instruction
following the CALLS or CALLG instruction

to which control will return when the called
procedure returns.

Table 6-1 (Cont.):

Structure of a VAX Call Frame

Field

Symbols

Meaning

Saved registers

Stack alignment
block

SF$L_SAVE_REGS The values of the registers specified in the

None

procedure’s entry mask. Procedures compliant
with the VAX Procedure Calling and Condition
Handling Standard save only registers R2
through R11. Registers RO and R1 are for the
return of function values.

Zero to three bytes added to the stack to align
it on a longword boundary. The number of
bytes here matches the value of the SPA bits.

6.2.2 Condition-Handler Argument List

When the kernel calls a condition handler, it passes two arguments

in a standard VAX argument list: the address of the signal array and
the address of the mechanism array. These longword arrays, described
in Sections 6.2.3 and 6.2.4, respectively, give the handler information
about the nature of the condition and the number of call frames that
have already been searched for a handler.

Figure 6-2 shows the structure of the argument list, and Table 6-2
describes its fields. The symbols listed in the second column are defined
in the $CHFDEF macro in STARLET.MLB.

Figure 6-2: Condition-Handler Argument List

Argument Count (2) l«—— AP

Signal Array

Mechanism Array
MLO-003228

Condition Handling 6-7

Table 6-2: Structure of the Condition-Handler Argument List

Field Symbol Meaning

Argument count None The number of arguments passed to the han-
dler (always 2)

Signal array CHF$L_SIGARGLST The address of the signal array

Mechanism array CHF$L_MCHARGLST The address of the mechanism array

6.2.3 Signal Arrays

A condition handler examines the signal array to determine what
condition — signal — caused it to be invoked. For exception condi-
tions, part of the array is created by the hardware/microcode, and
the rest is created within the service routine specific to the exception
(see Section 6.3); for software conditions, the array is created by the
KER$RAISE_EXCEPTION kernel procedure (see Section 6.4); and
for asynchronous exception conditions, the array is created by the
KER$AST INTERRUPT IPL 2 software interrupt service routine (see
Section 6.5).

Figure 63 shows the structure of the VAX signal array, and Table 6-3
describes the information it conveys to the condition handler. The
symbols in the table’s second column are defined in the $CHFDEF
macro in STARLET.MLB.

6-8 Condition Handiing

Figure 6-3: Signal Array

Argument Count l—— AP+4

Signal Name

Possible Additional Arguments

Exception PC

Exception PSL

MLO-003220

Condition Handling 6-9

Table 6-3: Structure of the Signal Array

Field Symbol

Meaning

Argument count CHF$L_SIG_ARGS

CHF$L_SIG_NAME

Signal name

Additional argu- None
ments

Exception PC None
Exception PSL None

The total number of condition arguments
passed in the signal array. The minimum
number i8 3 — the signal name, the exception
PC, and the exception PSL.

A unique bit configuration that identifies the
exception or software condition. The control,
facility number, message number, and severity
fields in the signal name are defined in the
VAX Procedure Calling and Condition Handling
Standard.

Zero or more additional arguments that pass
additional information about the exception

or software condition. The number of addi-
tional arguments in the array is determined by
subtracting 3 from the argument count.

The value of the program counter at the time
the condition was signaled. For traps and
software conditions, this value is the address of
the instruction following the one that generated
the condition. For faults, this value is the
address of the instruction that generated the
condition.

The value of the processor status longword at
the time condition was signaled. The condition-
dispatching logic can use this value to de-
termine the access mode of the process that
generated the condition.

6.2.4 Mechanism Arrays

A condition handler can determine the circumstances of its calling by
examining the mechanism array. Information in this array records how
many call frames were searched for handlers before the current handler
was called and identifies the frame (by FP value) that established the
handler. These data are useful when the handler wants to unwind

the stack to the frame that established it (see Section 6.7.2). For both
exception and software conditions, the mechanism array is created

6-10 Condition Handling

by the kernel’s condition-dispatching logic (in module EXCEPTION).

Section 6.6.1 describes this process.

Figure 6—4 shows the structure of the VAX mechanism array, and
Table 6—4 describes the information it conveys to the condition handler.
The symbols in the table’s second column are defined in the $CHFDEF

macro in STARLET.MLB.

Figure 6—4: Mechanism Array

Argument Count (4)

l«—— AP.8

Frame

Depth

Saved RO

Saved R1

MLO-003230

Table 6—4: Structure of the Mechanism Array

Meaning

Field Symbol

Argument count CHF$L_MCH_ARGS

Frame CHF$L_MCH_
FRAME

Depth CHF$L_MCH_
DEPTH

The number of arguments in the mechanism
array. This value is always 4.

The value of the frame pointer that defines
the stack environment for the procedure that
established the called condition handler. The
handler can use this value to unwind the stack
to the frame that established it.

The number of call frames searched to locate
the current condition handler. The handler can
use this value to unwind the stack to the frame
that established it.

Condition Handling 6-11

Table 6—4 (Cont.): Structure of the Mechanism Array

Field Symbol Meaning
Saved RO CHF$L_MCH_ The value of RO at the time the condition was
SAVRO signaled. Since the VAX calling standard pro-

hibits saving RO on entry into a procedure,

the condition-dispatching logic must save that
value here. It is restored when execution con-
tinues after the condition is handled. A handler
can return information to the procedure that
raised the condition by altering the contents of

this field.
Saved R1 CHF$L_MCH_ The value of R1 at the time the condition was
SAVR1 signaled. As with RO, the calling standard

prohibits the saving of R1.

6.3 Exception Conditions

When a synchronous exception is detected by the hardware/microcode,
the processor and the kernel cooperate to build the signal array on
the appropriate stack and transfer control to the uniform condition-
dispatching logic to complete processing the condition. Section 6.3.1
describes the processor’s role in creating the signal array, and
Section 6.3.2 describes the role played by the kernel.

6.3.1 Initial Processor Actions

When the hardware/microcode detects an exception, the processor
responds by taking the following actions:

1. Depending on the exception, access mode and stack may be
changed. In general, the processor uses the settings of the low
two bits of the exception’s SCB vector to determine on which stack
the exception is serviced. Table 6—-5 summarizes the stack choices
resulting from this architectural mechanism and the VAXELN
SCB’s definitions of exception vectors.

2. The exception PC is pushed onto the stack.
3. The exception PSL is pushed onto the stack.
4. Exception-specific parameters may be pushed onto the stack.

6-12 Condition Handling

5. Control is transferred to the service routine whose address is stored
in the SCB vector for the exception. The service routine then
finishes constructing the signal array and transfers control to the
routine that dispatches the exception, as described in Section 6.3.2.
Table 6—6 shows the exceptions defined by the VAX architecture,
their byte offsets in the SCB, their types, the number of their
additional parameters, and the names of their service routines.

Table 6-5: Selection of Exception Stack

Kernel or User On Interrupt
Exception Mode? Stack? Exception Stack
Machine check KorU N/A Interrupt
Kernel stack not valid K No Interrupt
Subset emulation KorU N/A Same
Change mode to kernel KorU No Kernel
Change mode to kernel K Yes Processor halt
All others KorU No Kernel
All others K Yes Interrupt

Table 6-6: VAX Exception Vectors Under VAXELN

Vector Extra

Exception (Hex.) Type Params. Service Routine/Remarks

Machine check 4 Abort/Fault 0 Handling based on processor type,
as described in Section 7.3. Process-
level, nonfatal machine checks
are reflected back to the service
routine KER$MCHECK in module
EXCEPTION.

Kernel stack not 8 Abort 0 KER$KERNEL_STACK in module

valid EXCEPTION. See Section 6.3.2.3.

Reserved/privileged 10 Fault 0 KER$DIGITAL_RESERVED in

instruction module EXCEPTION. This service

routine also serves as the entry point
for bugchecks, and this vector is also
used as the entry point to the VAX
floating-point emulation routines.
See Section 6.3.2.4.

Condition Handling 6-13

Table 6-6 (Cont.):

VAX Exception Vectors Under VAXELN

Vector Extra

Exception (Hex.) Type Params. Service Routine/Remarks

Customer reserved 14 Fault 0 KER$CUSTOMER_RESERVED in

instruction module EXCEPTION.

Reserved operand 18 Abort/Fault O KER$RESERVED_OPERAND in
module EXCEPTION.

Reserved address- 1C Fault 0 KER$RESERVED_MODE in module

ing mode EXCEPTION.

Access violation 20 Fault 2 KER$ACCESS_VIOLATION in
module EXCEPTION. This service
routine also handles the dynamic
expansion of the user stack. See
Section 6.3.2.1.

Translation not 24 Fault 2 KER$ACCESS_VIOLATION in

valid module EXCEPTION. Since the
kernel does not page, this fault is
reflected as an access violation.

Trace pending 28 Fault 0 KER$TRACE_TRAP in module
EXCEPTION.

Breakpoint instrue- 2C Fault 0 KER$BREAKPOINT in module

tion EXCEPTION.

Compatibility mode 30 Abort/Fault 1 KER$COMPATIBILITY in module
EXCEPTION.

Arithmetic 34 Fault/Trap 1 KER$ARITHMETIC in module
EXCEPTION. See Section 6.3.2.2.

Change mode to 40 Trap 1 KER$KERNEL_SERVICE in module

kernel DISPATCH. See Section 8.2.

Change mode to 44 Trap 1 KER$CHANGE_EXECUTIVE in

executive module EXCEPTION. This ac-
cess mode is not supported under
VAXELN.

Change mode to 48 Trap 1 KER$CHANGE_SUPERVISOR

supervisor in module EXCEPTION. This ac-
cess mode is not supported under
VAXELN.

Change mode to 4C Trap 1 KER$CHANGE_USER in module

user EXCEPTION.

6-14 Condition Handling

Table 6—6 (Cont.): VAX Exception Vectors Under VAXELN
Vector Extra

Exception (Hex.) Type Params. Service Routine/Remarks

Emulation start c8 Trap 10 VAX$EMULATE in module
[EMULATIVAXEMULATE. This
vector is for string-instruction emu-
lation.

Emulation continue CC Trap 0 KER$EMULATE_FPD in module

[EMULATJVAXEMULATE. The
vector for continuing an interrupted
emulated string instruction.

6.3.2 Initial Kernel Actions

Once the processor has transferred control to the appropriate exception
service routine, that routine takes the following steps to finish building
the signal array to allow processing to continue in the common dispatch
code:

1.

2.

The exception (signal) name is pushed onto the stack, for example,
SS$_ACCVIO for an access control violation.

The total argument count for the signal array is pushed onto the
stack. For example, an access control violation has an argument
count of 5: the exception PC, the exception PSL, two additional
parameters, and the signal name.

Control is transferred to the global entry point KER$REFLECT in
module EXCEPTION, the start of the uniform condition-dispatching
mechanism. Section 6.6 describes the function of KER$REFLECT.

Table 6—7 shows the signal name pushed onto the stack for each ex-
ception serviced by a routine in module EXCEPTION. The table also
shows the final number of arguments in the signal array. The following
sections, as noted in the table, describe the exceptions that require
additional processing before their service routines pass control to the
dispatch code.

Condition Handling 6-15

Table 6-7: Exceptions Serviced by Module EXCEPTION

Signal
Array

Exception Signal Name Size Remarks

Access-control SS$_ACCVIO 5 See Section 6.8.2.1.

violation

Arithmetic excep- Varies 3 See Section 6.3.2.2.

tion

Breakpoint instruc- SS$_BREAK 3

tion

Change mode to SS$_CMODUSER 4 The additional parameter is the

user change mode code.

Compatibility mode = SS$_COMPAT 4 The additional parameter is the
compatibility exception code.

Customer reserved SS$_OPCCUS

instruction

Kernel stack not KER$_KERNEL_ 3 See Section 6.3.2.3.

valid STACK

Machine check KER$_MACHINECHK 3 Machine-check exceptions reported to
a process have no extra parameters in
the signal array. The machine-check
parameters have been examined,
possibly written to the error log,
and discarded by the machine-check
handler.

Reserved/privileged SS$_OPCDEC 3 See Section 6.3.2.4.

instruction

Reserved address- SS$_RADRMOD 3

ing mode

Reserved operand SS$_ROPRAND 3

Trace pending SS$_TBIT 3

6.3.2.1 Access Control Violation Exceptions

The processor transfers control to the service routine KER$ACCESS_
VIOLATION in the following circumstances:

[]

6-16 Condition Handling

The memory management hardware/microcode detects an architec-
turally defined memory access control violation, such as attempting
to access privileged or nonexistent virtual memory.

e A translation-not-valid fault occurs (V bit clear in a PTE). Under
VMS, this exception is the entry into the paging subsystem. Since
VAXELN does not page, this exception is reflected to the process as
a normal access violation. VAXELN memory management always
sets the V bit when constructing page table entries, so this fault
is probably the result of a kernel-mode program corrupting a page
table.

In response to an access violation fault, the processor pushes two
extra exception parameters onto the stack: the inaccessible virtual
address and a bit mask describing the reason for the fault. The ex-
ception service routine KER$ACCESS_VIOLATION first examines the
PSL to determine whether the faulting process was in user mode. If
so, the routine first assumes that the fault resulted from user-stack
overflow and passes the virtual address parameter to the local sub-
routine KER$EXPAND_STACK to try to expand the stack. If the
address argument is a P1 virtual address, KER$EXPAND_STACK calls
KER$ALLOCATE_MEMORY to expand the user stack. If the expan-
sion fails, or the address is not in P1 address space, the subroutine
returns failure status.

If KER$EXPAND_STACK fails, the service routine pushes the signal
name SS$_ACCVIO and the signal array argument count (5) onto the
stack and transfers control to the dispatch code.

6.3.2.2 Arithmetic Exceptions

Seven possible arithmetic exceptions can occur on processors sup-
ported by VAXELN. For each exception, the processor pushes a
unique exception parameter onto the stack. The service routine
KER$ARITHMETIC, in module EXCEPTION, does not then simply
push a generic exception name onto the stack. Instead, the exception
parameter is used to create a unique signal name with the following
formula:

signalname = (8 * code) + SS$_ARTRES

Table 68 shows the arithmetic exception names, their codes, and their
symbolic representations.

Condition Handling 6-17

Table 6-8: Signal Names for Arithmetic Exceptions

Exception Code Type Symbol

Integer overflow 1 Trap SS$_INTOVF
Integer divide by 2 Trap SS$_INTDIV
zero

Decimal overflow 6 Trap SS$_DECOVF
Subscript range 7 Trap SS$_SUBRNG
Floating overflow 8 Fault SS$_FLTOVF_F
Floating divide by 9 Fault SS$_FLTDIV_F
zero

Floating underflow 10 Fault SS$_FLTUND_F

6.3.2.3 Kernel-Stack-Not-Valid Exceptions

A kernel-stack-not-valid exception indicates that the kernel stack was

not

valid while the processor was pushing information onto the stack

while initiating an exception or interrupt. This exception is serviced by

the

KER$KERNEL_STACK routine on the interrupt stack at IPL 31.

The service routine first determines whether the base of the kernel
stack is actually accessible. If not, a fatal KRNLSTAKNYV bugcheck is
initiated. If so, the kernel stack pointer is reset to the original base
of the kernel stack, ensuring that at least one page of stack space is
available. KERSKERNEL_STACK then takes the following steps to
report the exception:

1

2.
3.

The exception PC and PSL are copied from the interrupt stack to
the reset kernel stack.

The KER$_KERNEL_STACK signal name is pushed onto the stack.
The signal array argument count (3) is pushed on the stack to
complete the signal array.

The frame pointer is cleared, making the calling hierarchy un-
traceable and eliminating the possibility that the exception will be
reported to a condition handler established by the user.

Control is transferred to the dispatch code to complete the process-
ing of the exception.

6-18 Condition Handling

6.3.2.4 Reserved Instruction Exceptions

A reserved/privileged instruction exception can indicate an attempt to
execute an opcode not supported by the processor. This can occur, for
example, when a floating-point instruction is attempted on a proces-
sor without microcode for that type of floating-point format. Software
emulation of floating-point instructions is invoked through a service
routine for this exception. (If floating-point emulation is enabled, the
service routine — VAX$OPCDEC in module [EMULATIFPEMULATE
— tests to determine whether the reserved opcode indicates an emu-
lated floating-point instruction. If not, it transfers control to the service
routine KER$DIGITAL, RESERVED.)

KER$DIGITAL_RESERVED first checks whether the reserved opcode
is F Fyg, followed by FFEig or FD1g. This sequence is used by the ker-
nel to initiate bugchecks. If the sequence matches, KER$DIGITAL _
RESERVED transfers control to KER$BUG_CHECK (in module
BUGCHECK) to process the bugcheck.

If a bugcheck is not indicated, the service routine pushes the signal
name SS$_OPCDEC onto the stack, completes the signal array by
pushing the argument count (3) onto the stack and transferring control
to the dispatch code.

6.4 Software Conditions

The kernel procedure KER$RAISE_EXCEPTION (in module RAISE)
gives software a way to raise a signal in response to an error. The
condition sequence initiated by calling KER$RAISE_EXCEPTION
parallels the sequence generated by the hardware.

The vectors for most kernel procedures call KERSRAISE_EXCEPTION
to signal an error condition when the failed procedure’s caller has not
specified a status variable. This process is described in Section 8.4.2.
KER$RAISE_EXCEPTION is also available to user programs to report
any irregularities the program encounters during execution.

The primary function of KER$RAISE_EXCEPTION is to build a signal
array on the caller’s stack and pass control to the common dispatch
code, which then delivers the signal to the caller’s process in the caller’s
mode. The signal array constructed by KER$RAISE_EXCEPTION is
identical to the array constructed for an exception condition. The
signal name and additional arguments in the array are those passed as
arguments to KER$RAISE_EXCEPTION.

Condition Handling 6-19

KER$RAISE_EXCEPTION executes in the mode of its caller (see
Section 8.3, Dispatch to Procedures That Execute in the Caller’s Mode)
and takes the following steps to create the signal array and dispatch
the software condition:

1. The CALLS bit in the call frame for KER$RAISE_EXCEPTION is
cleared. Clearing this bit means that the argument list (containing
the signal name and any additional arguments) will not be removed
from the stack when a RET instruction is executed.

(The initial setting of the CALLS bit shows whether the procedure
was called with a CALLS or CALLG instruction. The remainder
of this description applies to the case of CALLS. Handling of the
CALLG case differs slightly but the outcome is identical.)

2. The caller’s saved PC and saved PSW are copied from the call frame
for KER$RAISE_EXCEPTION and saved. These values become the
exception PC and PSL values in the signal array.

3. The saved PC field in the call frame is replaced with an address
within KER$RAISE_EXCEPTION.

4. A RET instruction is executed to clear the call frame from the
stack. Execution continues within KER$RAISE_EXCEPTION but
is now on the caller’s frame.

5. The stack is manipulated to construct the signal array. This opera-
tion restores the exception PSL and PC from their saved locations,
moves the signal name and additional arguments above them, and
tops off the stack with the argument count for the array.

6. Control is transferred to the dispatch code, at KER$REFLECT,
which will add the mechanism array to the stack and dispatch the
software condition.

6.5 Asynchronous Exception Conditions

6—-20

Asynchronous exceptions are a mechanism for signaling an asyn-
chronous event to a process. As soon as possible after the asynchronous
event occurs, the asynchronous signal is delivered to the process.

Under VAXELN, asynchronous exception conditions have a limited and
specialized role, unlike their counterparts under the VMS operating
system, asynchronous system traps (ASTs). Asynchronous exceptions
have the following roles under VAXELN:

* To signal a process to force its exit

Condition Handling

* To signal a process to gain its attention
* To notify a process that power-failure recovery is in progress
* To halt a process with the debugger

Asynchronous exceptions are delivered to a process through the uni-
form condition-dispatching mechanism described in Section 6.6. Each
type of asynchronous exception has a kernel procedure dedicated to
its delivery. Calling one of these procedures results in a call to the
internal procedure KER$SIGNAL_AST, which posts the exception to
the process through the cooperation of the hardware and software. The
asynchronous exception is ultimately delivered to the target process
through the IPL 2 interrupt service routine KER$AST INTERRUPT.

Because the asynchronous exception is delivered in the same way as
any other synchronous exception or software condition, a process must
respond to the asynchronous event with special handling in a condition
handler. For example, it can respond to a forced-exit signal, generated
by KER$SIGNAL, by performing process-level cleanup, such as freeing
jobwide resources (for example, removing messages from a port or
unlocking a mutex).

Section 6.5.1 describes the software and hardware elements that coop-
erate to deliver asynchronous exceptions. Section 6.5.2 then describes
the routines used to request asynchronous exceptions. Section 6.5.3
next describes the kernel routine KER$SIGNAL_AST, used to post an
asynchronous exception to a process. Section 6.5.4 describes the AST
delivery ISR, and, finally, Section 6.5.5 describes the kernel procedures
that disable and reenable the delivery of asynchronous exceptions.

6.5.1 Data Structures and Hardware Features for Asynchronous
Exceptions

The VAX hardware/microcode and several software data structures co-
operate to deliver a requested asynchronous exception to a process. The
hardware components are the REI instruction, the ASTLVL privileged
register, and the IPL 2 software interrupt. The data structures that
support asynchronous exceptions are the process control block and the
process hardware context block. The following sections describe these
components and data structures. Discussion of the IPL 2 interrupt,
however, is deferred until Section 6.5.4.

Condition Handling 6-21

6.5.1.1

REI Instruction

The REI (Return from Exception or Interrupt) instruction initiates the
delivery of an asynchronous exception to a process by requesting an
IPL 2 interrupt. The requested IPL 2 interrupt, however, is not in fact
granted until processor IPL drops to user IPL.

The REI microcode requests the IPL 2 interrupt when the following
conditions accompany the execution of the instruction:

1. Execution must be returning to process context. If the interrupt
stack bit is set in the PSL (PSL<IS>) being restored, the REI mi-
crocode makes no further test and does not request the interrupt.
The asynchronous exception must be delivered in process con-
text and therefore cannot take place when execution is in system
context.

2. The access mode of the process whose PSL is being restored must
be as privileged or less privileged than the access mode for which
an asynchronous exception is pending. In other words, the REI
microcode checks the value of the ASTLVL privileged register. If
its value is less than or equal to the current mode field in the
PSL being restored, the interrupt is requested. This test prevents
a user-mode process (access mode = 3) running temporarily in
kernel mode (access mode = 0) from being interrupted to deliver
an asynchronous exception. The delivery will occur only when the
process returns to user mode through the subsequent execution of
the REI instruction.

The role of the ASTLVL register in the REI tests is described in
Section 6.5.1.2.

6.5.1.2 ASTLVL Register

The privileged processor register ASTLVL (PR$_ASTLVL) is used

in conjunction with the REI instruction to control IPL 2 software
interrupts. This register is part of the hardware context of a process
and has a save area in the process hardware context block (PTX),
described in Section 6.5.1.3. The LDPCTX (Load Process Context)
instruction copies the ASTLVL value from the PTX save area to PR$_
ASTLVL when a process is switched into execution.

6-22 Condition Handling

Under VAXELN, two possible values in PR$_ASTLVL indicate to the
REI microcode that an asynchronous exception is pending against the
current process:

* The value 0 in PR$_ASTLVL indicates that an asynchronous excep-
tion is pending against a kernel-mode process.

¢ The value 3 in PR$_ASTLVL indicates that an asynchronous excep-
tion is pending against a user-mode process.

When no asynchronous exception is pending against a process, the
value of PR$_ASTLVL is 4. No IPL 2 interrupt will be requested by the
REI microcode, because no access mode can be greater than or equal to
the ASTLVL of 4.

6.5.1.3 Hardware Context Block

When a process is switched into execution by the LDPCTX instruction,
the value of the PR$_ASTLVL register is determined by the value of its
save area in the process’s PTX. This save area is in bits <26:24> of the
PTX$L_PO_LIMIT field of the PTX.

When the kernel requests an asynchronous exception against a process
that is not currently executing, it writes the base, or program (JCB$B_
MODE), access mode of the target process (0 or 3) into the PTX$V_
ASTLVL bit field in the PTX. When the process next becomes current,
the restoration of PR$_ASTLVL from the PTX and the subsequent
executior of REI cause the asynchronous exception to be delivered
through the IPL 2 software interrupt.

When a process is created, the value of PTX$V_ASTLVL is set to

4, signifying that no asynchronous exception is pending against the
process. Because the SVPCTX instruction does not save the value

of PR$_ASTLVL in the PTX$V_ASTLVL, when the kernel changes
PR$_ASTLVL it also changes PTX$V_ASTLVL. When an asynchronous
exception has been delivered, the kernel returns the values of both
PTX$V_ASTLVL and PR$_ASTLVL to 4.

Condition Handling 6-23

6.5.1.4 Process Control Block

The kernel requests an asynchronous exception against a process by
setting a specific bit in the process control block (PCB) of the process to
receive the asynchronous exception.

The PCB$B_REASON field in the PCB contains the bits that represent
the asynchronous exceptions pending against a process. When set,
these bits have the following meanings:

e PCB$V_SIGNAL_DEBUG (bit 0) represents an asynchronous ex-
ception generated by a call to KERSRAISE_DEBUG_EXCEPTION.

e PCB$V_SIGNAL_POWER (bit 1) signifies an asynchronous excep-
tion generated by the power-failure recovery sequence.

e PCB$V_SIGNAL_QUIT (bit 2) signifies an asynchronous exception
generated by a call to KER$SIGNAL.

e PCB$V_SIGNAL_PROCESS (bit 3) signifies an asynchronous
exception generated by a call to KER$RAISE_PROCESS_
EXCEPTION.

¢ PCB$V_SIGNAL_DISABLE (bit 4) signifies that a process has
disabled the delivery of asynchronous exceptions by calling the
kernel procedure KER$DISABLE_ASYNCH_EXCEPTION.

When the IPL 2 interrupt service routine executes, it tests the bits
in PCB$B_REASON to determine the reason for the interrupt. The
reason bits are tested in the following order:
PCB$V_SIGNAL_DISABLE

PCB$V_SIGNAL_POWER

PCB3$V_SIGNAL_DEBUG

PCB$V_SIGNAL_QUIT

PCB$V_SIGNAL_PROCESS

o W

If the disable bit is set, the scan completes, and the interrupt is dis-
missed. Otherwise, asynchronous exceptions are mutually exclusive:
as soon as a set bit is discovered, it is cleared and the corresponding
signal is delivered to the process. If, for example, both a debug and
process-quit signal are pending against the process, the debug signal is
delivered first. Only after that first asynchronous exception is delivered
will the process-quit signal be delivered through a subsequent IPL 2
interrupt. (This process is described in Section 6.5.4.)

6-24 Condition Handling

6.5.2 Uses of Asynchronous Exception Conditions

The kernel delivers the following asynchronous exceptions:

* Process signal. This asynchronous exception is delivered to a
process specified in a call to KER$SIGNAL.

* Process attention signal. This asynchronous exception is deliv-
ered to a process specified in a call to KER$RAISE_PROCESS_
EXCEPTION.

* Power failure. This asynchronous exception is delivered to pro-
cesses during power failure recovery. The exception is delivered
only when the process’s job has Powerfailure exception set to Yes
in its program description.

¢ Debugger HALT command. This asynchronous exception is deliv-
ered to a process specified in a debugger HALT command.

The first two applications of the asynchronous exception mechanism
are available to users through the kernel procedures KER$SIGNAL
and KER$RAISE_PROCESS_EXCEPTION. The remaining two are
used internally by the kernel and debugger. All four are alike in that
the events they represent must be delivered asynchronously to the
normal execution of the target process, and all are delivered through
the VAXELN uniform condition-dispatching mechanism described in
Section 6.6.

The following sections describe these asynchronous exceptions.

6.5.2.1 Process Signal Exception

The asynchronous exception that signals a process is generated by a
call to the KER$SIGNAL kernel procedure (in module SIGNAL), which
specifies the object identifier for the process to receive the signal. The
intention in signaling a process is to force its exit with the KER$_
QUIT_SIGNAL status. If the process has established a condition
handler that returns a continue status in response to the quit signal,
the process will not exit.

KER$SIGNAL requests the quit signal against the target process by
passing the appropriate bit number in PCB$B_REASON (PCB$V_
SIGNAL_QUIT) to the internal subroutine KER$SIGNAL_AST, de-
scribed in Section 6.5.3. KER$SIGNAL_AST then sets that bit in the
target process’s reason mask and adjusts ASTLVL values to request an
IPL 2 interrupt the next time the target process executes.

Condition Handling 6-25

6.5.2.2 Process Attention Signal Exception

The asynchronous exception that requests process attention is gen-
erated by a call to the KER$RAISE_PROCESS_EXCEPTION kernel
procedure (in module RAISE), which specifies the object identifier for
the process to receive the signal. The intention is to force the process
to respond to the KER$_PROCESS_ATTENTION signal in a manner
defined by the program. The process should have a condition handler
that checks for this signal and takes a predefined action as a result. If
the condition handler does not return a continue status, the process is
forced to exit.

KER$RAISE_PROCESS_EXCEPTION requests the attention signal
against the target process by passing the appropriate bit number
in PCB$B_REASON (PCB$V_SIGNAL_PROCESS) to the internal
subroutine KER$SIGNAL_AST.

6.5.2.3 Power-Failure Exception

The asynchronous exception that generates a power-failure signal
is requested by the power failure-recovery routine KER$RESTART
(in module POWERFAIL). During recovery, KERSRESTART scans
the global job list for programs that have requested power-failure
notification (the PRG$V_POWER_RECOVERY bit is set in PRG$B_
OPTION_FLAGS).

When it locates such a program, KER$SRESTART walks the list of PCBs
for that job and, for each process, passes the appropriate bit number in
PCB$B_REASON (PCB$V_SIGNAL_POWER) to the internal subrou-
tine KER$SIGNAL_AST. When each process next executes, the KER$_
POWER_FAIL signal will be delivered. The process should have a con-
dition handler that checks for this signal and takes a power-recovery
action as a result. If the condition handler does not return a continue
status, it is forced to exit.

6.5.2.4 Debugger HALT Command

The asynchronous exception that results in the halting of a process
under debugger control is generated by the debugger HALT com-
mand. When the debugger receives a HALT command, it calls the
internal kernel procedure KER$RAISE_DEBUG_EXCEPTION (in mod-
ule DEBUGUTIL), passing the specified job and process numbers as
arguments.

6-26 Condition Handling

KER$RAISE_DEBUG_EXCEPTION searches the global job list to lo-
cate the target job. It then searches that job’s process list to locate the
target process. KERSRAISE_DEBUG_EXCEPTION then requests the
debug exception signal against the target process by passing the appro-
priate bit number in PCB$B_REASON (PCB$V_SIGNAL_DEBUG) to
the internal subroutine KER$SIGNAL_AST.

When the kernel’s condition-dispatching logic calls the debugger’s first-
chance handler, the request for the process halt is intercepted by the
debugger. The target process is then placed in the debug command
wait state to allow the user to interact with the process. Because the
signal is intercepted by the debugger, the process does not require a
condition handler to trap the signal.

6.5.3 Requesting an Asynchronous Exception

All requests for asynchronous exceptions are directed to a single in-
ternal subroutine, KER$SIGNAL_AST (in module ASTDELIVR). This
routine accepts two register arguments: the bit number in the PCB$B_
REASON mask that represents the requested signal and the address
of the target process’s PCB. KER$SIGNAL_AST is responsible for set-
ting the correct bit in the PCB$B_REASON mask and inserting the
appropriate values into PR$_ASTLVL and PTX$V_ASTLVL to request
the IPL 2 software interrupt. The ASTLVL values are set to the base
access mode of the target process (JCB$B_MODE).

KER$SIGNAL_AST executes as follows:

1. The requested bit is tested in PCB$B_REASON. If that bit is
already set, the requested signal is already pending against the
process, and the subroutine returns. Otherwise, the appropriate bit
is set.

2. The PCB$V_SIGNAL_DISABLE bit is tested in PCB$B_REASON.
If that bit is set, the target process has disabled the delivery of
asynchronous exceptions. Therefore, the subroutine returns.

3. The execution state of the current process is tested.

If the target process is running, the value of PR$_ASTLVL must
be set. When the kernel procedure that called KER$SIGNAL_AST
executes an REI to dismiss the CHMK exception, the microcode
requests an IPL 2 interrupt to deliver the asynchronous exception.

Condition Handling 6-27

If the target process is not running, the PTX$V_ASTLVL field in
its hardware context block is modified as well. The point at which
the asynchronous exception is delivered depends on the scheduling
state of the target process:

a. Ready. When the process is next scheduled to run, the sched-
uler’s final execution of an REI instruction to return to normal
system operation immediately delivers the asynchronous excep-
tion.

b. Waiting. If the target process is waiting, KER$SIGNAL_AST
calls the internal subroutine KER$UNWAIT to place it into
the ready state. When the process is next scheduled to run,
the scheduler’s final execution of an REI instruction to re-
turn to normal system operation immediately delivers the
asynchronous exception.

After the asynchronous exception is delivered, however, the
target process returns to its original waiting state (unless
its wait conditins were satisfied in the meantime). This re-
sumption of the wait is made possible by the interaction of
the KER$UNWAIT routine and the kernel vectors for the
KER$WAIT kernel procedures. KER$UNWAIT is described
in Section 11.3.3.3.

c. Suspended. If the target process is suspended from execution,
the asynchronous exception can be delivered only when the
process is returned to the ready state. The delivery of the
asynchronous exception then awaits the next execution of the
process.

4. The subroutine returns to its caller.

6.5.4 Delivering an Asynchronous Exception: The IPL 2 interrupt

The IPL 2 software interrupt service routine, KER$AST _INTERRUPT,
executes in response to the IPL software interrupt. This interrupt is
normally requested by microcode (the REI instruction), based on the
contents of the ASTLVL register, rather than by the MTPR instruction
in the kernel. The MTPR request is used in the single case of process
preemption within a job. When the IPL 2 interrupt occurs, control is
transferred to KER$AST INTERRUPT (in module ASTDELIVR), the
address in the SCB vector for the IPL 2 software interrupt.

6-28 Condition Handling

The responsibility of KER$AST INTERRUPT is to determine the cause
of the interrupt. Two possible causes exist:

¢ The current process has an asynchronous exception pending against
it. This is the case when KER$SIGNAL_AST has set PR$_ASTLVL
or PTX$V_ASTLVL to request an interrupt against the current
process.

* The current process is being preempted. This is the case when the
current process has a lower priority than another process that has
just become ready within the current job. The IPL 2 interrupt is
requested by the KERSREADY_PROCESS subroutine (in module
SCHEDPRO), which inserts the PCB address of the preempting
process into the JCB$A_NEXT_PCB field of the current JCB and
requests an IPL 2 interrupt by writing IPL$K_AST_LEVEL to
PR$_SIRR.

KER$AST INTERRUPT determines that preemption is required
by checking the value of JCB$A_NEXT PCB field and branching to
the scheduler if the value is nonzero.

KERS$AST _INTERRUPT is entered on the kernel stack in the context
of the target process. If the target process is a user-mode process, exe-
cution is switched to the user stack before the asynchronous exception
is delivered. Because KER$AST_INTERRUPT builds a signal array on
the appropriate stack and executes in the context of the target process,
the kernel can deliver the asynchronous exception through the uniform
condition-dispatching mechanism as if it were a synchronous exception
detected by hardware. When the asynchronous exception is delivered,
a condition handler established by the target process should take a
predefined action in response to the asynchronous exception.

KERS$AST _INTERRUPT delivers an asynchronous exception as follows:

1. General registers RO through R3 are saved on the stack as working
registers.

2. The value of JCB$A_NEXT_PCB is tested in the current JCB.
If that field contains a value, then the IPL 2 interrupt has been

requested to start preempting the current process. Control is
passed to the scheduler as follows to perform the preemption:

a. The current PSL is pushed on the stack.

b. A BSBW instruction is executed to transfer control to
KER$RESCHEDULE in module SCHEDJOB.

Condition Handling 6-29

When KER$RESCHEDULE executes the SVPCTX instruction,
the return PC pushed onto the stack by the BSBW and the
PSL pushed previously become the return PC and PSL saved
in the current process’s hardware context block. When this
preempted process runs again, it continues execution at IPL
2, on the kernel stack, at the instruction after the BSBW in
KER$AST _INTERRUPT.

If an asynchronous exception was requested against the pre-
empted process while it was out of execution, the remainder of
KER$AST _INTERRUPT delivers it. If the REI that is executed
after the preempted process is restored requests an IPL 2 inter-
rupt (this happens if the preempted process is in user mode),
the request is not granted because the restored process is al-
ready running at IPL 2 in kernel mode. When IPL returns to
0 after the asynchronous exception is delivered, the additional
IPL 2 interrupt is granted and dismissed if no further bits in
PCB$B_REASON are set.

3. The LOCK macro is executed to block other software interrupts.

4. The values of PR$_ASTLVL and PTX$V_ASTLVL are set to 4 to
prevent another IPL 2 interrupt from being requested for this
process.

5. The PCB$V_SIGNAL_DISABLE bit in PCB$B_REASON is set to
disable further asynchronous exceptions against this process.

If PCB$V_SIGNAL_DISABLE is already set, asynchronous excep-
tions are disabled for the process. The interrupt is dismissed as
follows:

a. The PCB$V_SIGNAL_DISABLE bit in PCB$B_REASON is
cleared to reenable asynchronous exceptions.

b. The general registers are restored.
c. The REI instruction is executed.

6. The base access mode of the process is obtained from JCB$B_
MODE.

7. The current access mode of the process is compared to its base
access mode. If the current mode is kernel and the base mode is
user, the interrupt cannot be delivered until the mode returns to
user. Such spurious IPL 2 interrupts are rare and are dismissed as
follows:

a. The PCB$V_SIGNAL_DISABLE bit in PCB$B_REASON is
cleared to reenable asynchronous exceptions.

6-30 Condition Handling

8.

10.

b. If any of the other bits in PCB$B_REASON is set, the values of
PR$_ASTLVL and PTX$V_ASTLVL are reset to 3.

c. The general registers are restored.

d. The REI instruction is executed to dismiss the interrupt and
restore IPL to its previous value.

The bits in PCB$B_REASON are tested; the first set bit that is
found will be the asynchronous exception that is serviced. The bits
are tested in the following order:

a. PCB3$V_SIGNAL_POWER
b. PCB$V_SIGNAL_DEBUG

c. PCB$V_SIGNAL_QUIT

d. PCB$V_SIGNAL_PROCESS

If no bits are set, the spurious interrupt is dismissed as follows:

a. The PCB$V_SIGNAL_DISABLE bit in PCB$B_REASON is
cleared to reenable asynchronous exceptions.

b. The general registers are restored.
c. The REI instruction is executed.

The set bit is cleared, and the appropriate signal name (for exam-
ple, KER$_QUIT_SIGNAL) is pushed onto the stack.

Control is transferred to a subroutine to perform the following
steps:

a. IPL is lowered from IPL$K_SYNCHRONIZE to 0. The asyn-
chronous exception will be delivered at user IPL; lowering it to
that level here allows normal system activity to resume as soon
as possible.

b. If the asynchronous exception is to be delivered to a user-mode
process, the data saved on the kernel stack is copied to the
user stack. The internal subroutine KER$EXPAND_STACK
(in module EXCEPTION) is called to expand the user stack if
necessary. If the expansion fails, the asynchronous exception is
turned into an access violation.

c. A PSL appropriate to the access mode of the process (and
reflecting IPL 0) is constructed on the kernel stack, and the
return address from the subroutine call is pushed on top of it.

d. The general registers are restored.

Condition Handling 6-31

e. An REI instruction is executed to return the process to its base
access mode. If that mode is user, execution is switched to the
user stack.

Execution continues at the instruction following the subroutine call,

at IPL 0 and in the appropriate access mode.

11. The argument count (3) of the items remaining on the stack is
pushed onto the stack. The following items are now on the stack:

* The argument count

* The asynchronous exception signal name
* The PC at the time of the interrupt

¢ The PSL at the time of the interrupt

12. The local procedure DELIVER_AST is called with the CALLG
instruction. The argument list in the called procedure points to the
information on the stack.

DELIVER_AST performs the following steps to deliver the asyn-
chronous exception:

a. A condition handler is established to detect the target process’s
unwinding of the stack. The handler is also called first in
the kernel’s search for a handler. Since this handler simply
resignals, its presence has no impact on the delivery of the
asynchronous exception.

If the stack is unwound, the handler is called with the signal

name SS$_UNWIND. When this occurs, the handler calls

KER$ENABLE_ASYNCH_EXCEPTION to reenable asyn-

chronous exceptions for the process and reset the value of

ASTLVL if any further asynchronous exceptions are pending.

The handler then resignals to allow the unwinding to resume.

b. A standard VAX signal array is built on the stack as follows:
i The current PSL is pushed onto the stack.

ii The address of the RET instruction at the end of DELIVER_
AST is pushed onto the stack. This PC and the PSL become
current if the process continues from the asynchronous
exception.

iii The signal name and argument count are pushed from the
CALLG argument list onto the stack.

c. Control is transferred to KERSREFLECT in module EXCEPTION,
the start of the uniform dispatching mechanism (see Section 6.6).

6-32 Condition Handling

From this point, the asynchronous exception is treated like any
synchronous exception or software condition.

d. If the process continues from the asynchronous exception,
control returns to the RET instruction in DELIVER_AST when
the exception is dismissed. The execution of the RET returns
control to the main line of KER$AST INTERRUPT, after the
CALL to DELIVER_AST.

13. A call is made to KER$ENABLE_ASYNCH_EXCEPTION. As de-
scribed in Section 6.5.5, this procedure resets PCB$V_SIGNAL_
DISABLE and checks to see whether any more asynchronous excep-
tions are pending against the process. If so, the value of ASTLVL is
set accordingly.

14. An REI is executed to dismiss the IPL 2 interrupt. Because IPL
has already been lowered to 0, this REI has no effect on IPL.

If further asynchronous exceptions are pending against the process,
the REI requests a further IPL 2 interrupt to deliver the next one
indicated by the reason mask.

If the process to which the asynchronous exception was delivered had
been in the wait state before the IPL 2 interrupt was granted, after
the interrupt is dismissed, its execution continues within the kernel
vector for KERSWAIT _ANY or KER$WAIT ALL. Within the vector,
the value of RO is tested, and the wait is reexecuted if the value is 0.
Since the KER$UNWAIT procedure guarantees that the value of RO
will be zero when the process reenters execution, waiting processes
interrupted by asynchronous exceptions resume their waiting states
after the exception is dismissed.

6.5.5 Disabling and Enabling Asynchronous Exceptions

The kernel provides two procedures to disable and reenable the delivery
of asynchronous exceptions. KER$DISABLE_ASYNCH_EXCEPTION
(in module ASTCONTRL) disables the delivery of asynchronous ex-
ceptions by setting the PCB$V_SIGNAL_DISABLE bit in the PCB$B_
REASON mask of the calling process. KER$SIGNAL_AST checks this
bit and denies all requests for asynchronous exceptions against the
process while the disable bit is set.

Condition Handling 6-33

KER$ENABLE_ASYNCH_EXCEPTION reenables the delivery of asyn-
chronous exceptions to the calling process by once again clearing the
PCB$V_SIGNAL_DISABLE bit in the reason mask. The procedure also
checks whether any asynchronous exceptions are now pending against
the process by checking the other bits in PCB$B_REASON. If any bits
are set, the procedure requests the delivery of an asynchronous excep-
tion by writing the process’s base access mode to both PTX$V_ASTLVL
and PR$_ASTLVL.

As it returns, the procedure executes an REI instruction, which re-
quests an IPL 2 interrupt to deliver the pending asynchronous excep-
tion.

6.6 Uniform Condition Dispatching

Once the signal array has been built on the stack, there is no difference
in the way the kernel handles synchronous exceptions, asynchronous

exceptions, and software conditions. The kernel’s operations, beginning
at global label KER$REFLECT in module EXCEPTION, are as follows:

1. The mechanism array is constructed on the stack.

2. If the current mode is kernel and the kernel debugger is present,
the condition state is passed to the kernel debugger. If the condi-
tion is handled there, the condition is dismissed.

3. If the condition was raised by a user-mode process but is being
serviced on the kernel stack, the signal and mechanism arrays are
copied to the user stack, and the mode is returned to user.

4. The condition-handler argument list is constructed on the stack.

5. If string-instruction emulation is enabled, a subroutine in the
emulator is invoked to alter the exception PC, making it appear
that the exceptions occurred at an emulated instruction instead of
within the emulator.

6. If the debugger is present, it is called to perform a first-chance
examination of the condition. The debugger checks to see whether
the exception is one of the following:

* Breakpoint exception (breakpoint reached, SS$_BREAK)

* Process exit signal (for processes under control of the debugger,
KER$_EXIT_SIGNAL)

* Debugger attention signal (KER$_DEBUG_SIGNAL)

6-34 Condition Handling

* Trace bit pending trap (used to implement breakpoints, SS$_
TBIT)

* Reserved operand fault (used to implement STEP/OVER com-
mands, SS$_ROPRAND)

If the first-chance handler intercepts one of these conditions, it sets
a success bit and returns. The condition is then dismissed.

7. IfIPL is elevated above process level (0) and the kernel debugger is
enabled, it is called. This could be the case when a device interrupt
service routine is being debugged.

8. The call frames on the stack are searched for an established condi-
tion handler. If one is found, it is called.

9. If the condition is handled, it is dismissed. Otherwise, the stack is
searched for another handler.

10. If no handler deals with the condition, the debugger is called as
a last-chance handler. If the condition can be handled within the
debugger, the condition is dismissed. Otherwise, the process is
deleted.

11. If the debugger is not present, the process is deleted.

The following sections describe several of these steps in greater detail.

6.6.1 Building the Mechanism Array and Argument List

To construct the mechanism array above the signal array, KERSREFLECT
pushes the following values onto the stack:

¢ A zero longword. This longword separates the signal and mech-
anism arrays and provides compatibility with VMS condition-
dispatching logic. Later, the high byte of this longword is used to
save the original argument count for the signal array. This value
must be saved, because condition handlers can alter the signal ar-
ray argument count for their own purposes. The saved value allows
the signal array to be cleared from the stack when the condition
is dismissed. (Under VMS, the longword also stores the code that
distinguishes a call to LIBSIGNAL from a call to LIB$STOP.)

¢ The contents of registers R1 and RO.

¢ The value —1. This is the initial frame depth in the mechanism ar-
ray and flags the initial pass in the search for a condition handler.

* The current value of the frame pointer. This is the FP of the frame
that raised the signal.

Condition Handling 6-35

¢ The value 4 — the number of arguments in the mechanism array.

On top of the mechanism array, KER$REFLECT constructs the
condition-handler argument list by pushing the following values onto
the stack:

* The address of the mechanism array
* The address of the signal array

¢ The value 2 — the number of arguments in the condition-handler
argument list

In addition, the original argument count for the signal array is copied
to the high byte of the VMS-compatibility longword, which separates
the signal and mechanism arrays on the stack. This value is used when
the condition is dismissed to clear the top of the signal array from the
stack.

After these operations, the stack appears as shown in Figure 6-5.
When a condition handler is called, the argument pointer (AP) points
to the argument count in the condition-handler argument list. Then,
using the CHF$L_SIGARGLST and CHF$L_MCHARGLST offsets from
AP, the handler can obtain any value in either of the arrays.

6.6.2 Reflecting the Condition Back to the Originator’s Mode

Exception conditions are reported to a process in the mode in which the
exception occurred. If a user-mode process raises an exception that is
serviced on the kernel stack, such as an access violation or arithmetic
trap, KERSREFLECT copies the signal and mechanism arrays to the
user-mode stack and restores the access mode to user by executing an
REI instruction.

All exception conditions likely to be reported to a user-mode process are
serviced on the kernel stack, so this process is always necessary. For
software conditions raised by KER$RAISE_EXCEPTION, the process
is never necessary, because that procedure executes in the mode of its
caller.

6-36 Condition Handling

Figure 6-5: Condition Stack

2

Address of Signal Array

Address of Mechanism Array —

4
These longwords
are used and Frame
modified by
the handler Depth
search procedure.
Saved RO
Saved R1

VMS Compatibility Longword

<
<«

N Argument count (N) is the
number of longwords in a
Signal Name signal array (N>=3)

Additional Exception Parameters
Pushed by Hardware or

{ Additional Arguments Passed to 1

KER$RAISE_EXCEPTION

Exception PC or PC following
call to KER$RAISE_EXCEPTION

Exception PSL

< SP Before Exception

MLO-003231

6.6.3 Dispatching the Condition

The major goal of the kernel’s condition-dispatching logic is to locate
a condition handler in a call frame and call it, passing the condition-
handler argument list to the handler.

Condition Handling 6-37

At this point in the dispatch sequence, the signal and mechanism ar-
rays have been set up on the stack for the access mode in which the
condition will be reported. As the search for the condition handier
proceeds, the frame and depth fields in the mechanism array are up-
dated to indicate how far the search has progressed. These fields in the
mechanism array provide useful information to condition handlers that
choose to unwind the stack to an earlier call frame (see Section 6.7.2).

The search for a condition handler begins at the global label
KER$DISPATCH_EXCEPTION in module EXCEPTION, where the
local procedure SEARCH is called. Within SEARCH, AP points to the
top of the condition-handler argument list.

If SEARCH succeeds in locating a handler, the handler is called. If the
handler cannot handle the condition (called resignaling the condition),
SEARCH is called again. This process continues until a handler deals
with the condition (called continuing from the condition) or SEARCH
cannot locate another handler.

Figure 6—6 shows the code sequence used, first to call SEARCH and
then to call a condition handler at the address returned by SEARCH.
In the sequence, SP points to the condition-handler argument list.
This argument list is passed to both the SEARCH procedure and the
condition handler.

Figure 6-6: Locating and Calling a Condition Handler

KERSDISPATCH EXCEPTION: :

CALLG (SP) , B*"SEARCH ; search for a handler
BLBC RO, LAST CHANCE ; no handler, try debugger
CALLG (SP), (R1) ; call the handler

When a handler continues from a condition, the condition is dismissed
by the following sequence:

1. The condition-handler argument list and mechanism array are
removed from the stack. As the mechanism array is removed, the
saved values of RO and R1 are restored.

2. All but the last two longwords in the signal array are cleared from
the stack. These remaining longwords are the exception PC and
PSL.

6-38 Condition Handling

3. An REI instruction is executed to pop the exception PC and the
exception PSL into the appropriate processor registers. In the
case of faults, execution resumes at the instruction that raised the
signal. For traps (and KER$RAISE_EXCEPTION emulates a trap),
execution resumes at the instruction following the one that caused
the signal.

If no handler is found or all handlers resignal, the kernel attempts
to call the debugger as a last-chance handler, as described in
Section 6.6.4.1.

The following sections describe how a condition handler is established,
how the SEARCH procedure locates the handler, and what special
handling occurs when another signal is raised before the first one is
dismissed.

6.6.3.1 Establishing a Condition Handler

Under the VAX architecture, a condition handler is established by
writing the address of the handler procedure in the first longword
at the top of the call frame. As the kernel searches the stack for a
condition handler, it examines this longword in each call frame.

Because the frame pointer always points to this longword, the following
VAX instruction establishes a condition handler:

MOVAB handler, (FP)

Under the control of a higher-level language, such as VAXELN Pascal
or VAX C, a language statement or library routine (ESTABLISH or
vaxc$establish) performs the same function. In the case of VAXELN
Pascal, the ESTABLISH statement actually places the address of the
procedure PAS$HANDLER into the handler longword. When called,
PAS$HANDLER then calls the procedure the user specified in the
ESTABLISH statement. This arrangement places extra call frames on
the stack but has no impact on the kernel’s dispatch logic.

A condition handler is canceled by removing its address from the
handler longword:

CLRL (FP)

Issuing the Pascal REVERT statement and calling vaxc$establish
with a null argument perform this function for their callers.

Condition Handling 6-39

6.6.3.2 Searching the Call Stack

When called from KER$DISPATCH_EXCEPTION, the SEARCH pro-
cedure examines one call frame after another, beginning at the top of
the stack, until it locates a frame that has established a handler or it
runs out of frames to search. As each frame is examined, the depth and
frame arguments in the mechanism array are updated. If SEARCH is
called again (because a handler has resignaled), it resumes its search
beginning at the call frame pointed to by the last frame argument it
set. This ensures that no call frame is searched more than once.

SEARCH takes the following steps to locate a condition handler:

1.
2.

The frame pointer argument is obtained from the mechanism array.
The depth argument in the mechanism array is increased by 1.

If this increment causes the depth to become 0, then the cur-
rent frame belongs to the procedure that raised the signal, and
execution skips to step 6. This is the case the first time that
SEARCH is called, because the original frame depth is set to —1
by KER$REFLECT.

The current frame is tested to see whether it is the frame of a
condition handler. If so, more than one condition has been signaled
and special handling is required, as described in Section 6.6.3.3.

The saved frame pointer in the current call frame is obtained. If no
saved FP is available, the bottom of the call stack has been reached,
and SEARCH returns failure status.

The saved FP value is written to the frame argument in the mecha-
nism array. This means that the next frame down the stack will be
examined for a handler.

The handler longword in the updated frame argument is tested. If
it contains a nonzero value, a success flag is set and the handler
address is returned to KER$DISPATCH_EXCEPTION.

If the handler longword is zero, SEARCH loops back to step 1 to
continue the search.

As each handler is called, the updated depth and frame arguments in
the mechanism array provide it with the following information:

The depth argument represents the number of frames that have
been searched for a handler before the current handler was called.

6—40 Condition Handling

* The frame argument represents the value of the saved FP in the
call frame that established the current handler.

6.6.3.3 Dealing with Multiple Active Signals

If a signal is raised in a condition handler or in a procedure called by a
condition handler, a situation called multiple active signals is reached.
To avoid an infinite loop of conditions, the SEARCH procedure called by
KER$DISPATCH_EXCEPTION modifies its search algorithm so that
those frames searched while servicing the first condition are skipped
while servicing the second condition.

For this skipping to work correctly, call frames of condition handlers
must be uniquely recognizable. The frames are made so by calling
condition handlers from a standard site within module EXCEPTION.
Figure 6-7 shows how this call site is identified by the global label
KER$CALL_HANDLER_PC.

Figure 6-7: Common Call Site for Condition Handlers

KERSDISPATCH_EXCEPTION: :

CALLG (SP) , BASEARCH ; search for a handler
BLBC RO, LAST_CHANCE ; no handler, try debugger
CALLG (SP), (R1) ; call the handler

KER$CALL_HANDLER_PC::
NOP
BLBC KERSDISPATCH_EXCEPTION ; handler resignaled

The global label KER$CALL_HANDLER_PC represents the address of
the instruction following the call to the condition handler. Within the
handler’s call frame, the saved PC always corresponds to the value of
KER$CALL_HANDLER_PC. When SEARCH locates a call frame that
has KER$CALL_HANDLER_PC as its saved PC, it branches to a code
sequence that finds the call frame of the procedure that established the
current condition handler.

This information is stored in the frame argument in the mechanism
array built for this earlier signal, directly below the earlier handler’s
frame on the stack. SEARCH locates the array by calculating the size

Condition Handling 641

of the handler’s call frame, which yields the location of the condition-
handler argument list. From this list the address of the mechanism
array is obtained, and from there the frame argument is obtained.

To skip the call frames searched during the earlier signal, SEARCH
continues examining call frames, beginning with the frame obtained
from the handler’s mechanism array. The depth argument is not in-
creased to reflect the frames that are skipped, because those frames are
not searched during the current signal.

Figures 6-8 and 6—9 show how the modified search procedure functions
during multiple active signals. Procedure A has called procedure

B, which has called procedure C, which raised signal S. Figure 6-8
shows the stack at this point. Procedures A, B, and C have established
condition handlers AH, BH, and CH, respectively.

The numbers in both figures refer to the following steps, which describe
the modified search procedure:

@ Procedure A calls B, which calls C.
@O Procedure C generates signal S.

In response to the signal, the condition-dispatching logic in module
EXCEPTION creates the signal and mechanism arrays on top of
the call frame for C and calls handler CH with a depth of 0.

CH resignals, causing its frame to be removed from the stack, and
the next frame (B) is searched.

© Since B has established a handler, BH is called with a mechanism
array depth argument of 1. Again, its frame appears on top of
the mechanism and signal arrays for signal S. (See Figure 6-9.)
The saved frame pointer in BH’s call frame points to the frame for
procedure C.

O Handler BH calls procedure X, which calls procedure Y (see
Figure 6-9).

© Procedure Y generates signal T. In the search for a handler for
signal T, the desired sequence of frames to be examined is frame
Y, frame X, frame BH, and frame A. Frames B and C should be
skipped because they were examined for signal S.

@ The search proceeds in the normal way. Frames Y, X, and BH
are examined, with handlers YH, XH, and BHH being called and
resignaling in turn. After handler BHH resignals, SEARCH is
called again. Examining the saved PC in BH’s frame, SEARCH
discovers that PC to be KER§CALL_HANDLER_PC. BH was called

642 Condition Handling

as a handler; therefore, SEARCH must postpone its search until it
has skipped to the frame beyond BH’s establisher.

The skipping is accomplished by locating the frame that established
BH. The address of that frame resides in the mechanism array for
signal S. To locate the mechanism array for signal S, the value of
SP before the call to BH must be calculated, using the register save
mask and stack alignment bits in the call frame. Given the value
of SP, SEARCH obtains the frame argument from the mechanism
array — this is the FP value for procedure B.

Because the frame pointed to by the frame argument has already
been searched, the next frame examined by SEARCH is the frame
pointed to by the saved FP in the call frame for procedure B — the
frame for procedure A.

Since procedure A has established a handler, AH is called. The
following depth arguments are passed to the handlers as a result of
the modified search for a handler for signal T: 0 for YH, 1 for XH, 2
for BHH, and 3 for AH.

The frame for SEARCH or for any of handlers YH, XH, BHH, and
AH is located on top of the signal and mechanism arrays for signal
T.

Condition Handiing 643

Figure 6-8: Modified Search with Multiple Active Signals, Part 1

® i

2
@ Signal Array
Mechanism Array]

Signal and 4
Mechanism
Arrays for Establisher FP
Signal § @
Generated by -
Procedure C Depth = 1

RO

R1

Compatibility Longword

N

Name of Signal S

y Other Parameters

Exception PC in C

Exception PSL

CH
@ Save Mask and PSW
Call Frame for Saved FP
Procedure C
Saved PCinB
y
BH
@ Save Mask and PSW
Call Frame for Saved FP
Procedure B
Saved PC in A . "
Direction of
Growth
AH
@ Save Mask and PSW
Call Frame for Saved FP
Procedure A
Saved PC

MLO-003232

6—44 Condition Handling

Figure 6-9: Modified Search with Multiple Active Signals, Part 2

® ?

2
@ Signal Array
Mechanism Array —]

‘s‘ignLal axnd 4
glr;:ﬁ .:.or Establisher FP
Provadure " Dopth=®

RO

R1

Compatibility Longword

N

Name of Signal T

Other Parameters

Exception PC in Y

Exception PSL

YH

@ Save Mask and PSW

Call Frame for Saved FP
Procedure Y

Saved PC in B

XH

Y
To Call Frame for
Save Mask and PSW Procedure A

in Figure 5-8

Call Frame tor Saved FP

P

Saved PC in A

Direction of
Growth
BHH
@ Save Mask and PSW
Saved FP

Call Frame for
Handler BH
KER$CALL_HANDLER_PC

Saved Registers and Stack @ To Call Frame for

Alignment Bytes indicated Procedure C
by Register Save Mask in in Figure 5-8
Call Frame for BH

MLO-003233

Condition Handling

6.6.4 Dealing with Unhandled Conditions

If the condition-dispatching logic fails to find a condition handler, or if
all the condition handlers found in the stack resignal the exception, the
kernel takes two further actions to deal with the condition:

¢ It attempts to call the debugger as a last-chance handler.
¢ It forces the offending process to exit.

The following sections describe these actions.

6.6.4.1 Calling the Last-Chance Handler

The kernel does not possess its own last-chance handler. Instead, it
relies on the debugger to give the user a final chance to correct an error
condition.

Once the SEARCH procedure fails to find a condition handler in the
stack, execution branches to a test for the presence of the debugger. If
the debugger is not included in the system, control branches to a code
sequence that deletes the process (see Section 6.6.4.2).

If the debugger is included in the system (KER$GA_KERNEL_
DEBUG_CODE contains a system address), the IPL of the current
process is checked. If the IPL is at process level (0), the process-level
debugger is called. If IPL is greater than 0, a test is made to determine
whether the kernel debugger is present in the system. If so (KER$GA_
KERNEL_DEBUG_DATA is nonzero), IPL is set to IPL$K_KERNEL_
DEBUG, and the kernel debugger is called. If the kernel debugger is
not in the system, the fatal bugcheck INVEXCEPTN (invalid exception)
is taken to crash the system.

If the condition is handled by the user employing either debugger, the
signal is finally dismissed. Otherwise, the offending process is forced to
exit.

6.6.4.2 Forcing Process Exit

When a process cannot handle an exception or software condition, it
must be deleted by the kernel. The kernel first obtains the signal name
from the signal array for the condition. It then calls the KER$EXIT
procedure on behalf of the process; the signal name is the exit status.

646 Condition Handling

If the exiting process is a master process and was created by a
program-level call to KER$CREATE_JOB that specified an exit port,
the signal name is reported to the job’s exit port. If this process is a
subprocess and was created by a call to KER$CREATE_PROCESS that
specified an exit variable, the signal name is returned to the caller as
the exit status for the process.

6.7 Condition Handler Actions

When a condition handler is called by the condition dispatcher, several
options are available to it:

¢ It can fix the condition and allow execution to continue at the
interrupted point in the program.
¢ It can pass the condition along to another handler by resignaling.

¢ It can also allow execution to resume at any arbitrary place in the
calling hierarchy by unwinding a number of call frames from the
stack.

The following sections describe these options in more detail.

6.7.1 Continuing or Resignaling

A handler first determines the nature of the condition by examining the
signal name field in the signal array. If the handler determines that it
is incapable of resolving the current condition, it informs the kernel’s
condition-dispatching logic by passing an even return status (such as
SS$_RESIGNAL) back to its caller, a process called resignaling. Given
this return status, KER$DISPATCH_EXCEPTION continues its search
down the stack for another condition handler.

If the condition handler is able to resolve the condition, it informs
KER$DISPATCH_EXCEPTION of this by passing back an odd return
status (such as SS$_CONTINUE).

When KER$DISPATCH_EXCEPTION finds an odd return value in RO,
it dismisses the condition as described in Section 6.6.3.

Condition Handling 647

6.7.2 Unwinding the Call Stack: KERSUNWIND

A condition handler can change the flow of execution when a condition
occurs. This technique is called unwinding the stack and allows a
handler to pass control back to a previous level in the calling hierarchy
by discarding a specified number of call frames.

The VAXELN Pascal and VAX C languages offer this unwind capability
in the form of the up-level GOTO and longjump, respectively. Both
change program flow by calling the KER§UNWIND procedure (in mod-
ule RAISE). KER$UNWIND, however, can be called by a handler writ-
ten in any language supported under VAXELN. KER$UNWIND accepts
as input either an absolute number of frames to be unwound or the ac-
tual FP value of the frame at which execution should continue. These
alternative uses of KER$UNWIND are described in Section 6.7.2.1.

KER$UNWIND does not actually remove call frames from the stack.
Rather, it changes the return PC in the frames above the target frame
to point to a special routine within KER$UNWIND that will be exe-
cuted as each procedure exits with a RET instruction.

As each frame to be unwound executes a RET instruction, registers
saved in the call frame are restored and control is passed to the special
kernel routine, which examines the current frame for a condition han-
dler. If a handler is established for the frame, a signal and mechanism
array are built on the stack, and the handler is called with the signal
name SS$_UNWIND. When the handler returns to KER$UNWIND, a
RET is issued to discard the current call frame. This sequence contin-
ues until the stack has been unwound to the target call frame. Calling
handlers as a part of the unwind sequence allows handlers that previ-
ously resignaled a condition to regain control and perform procedure
cleanup; it also ensures correct restoration of saved registers.

6.7.2.1 Interface to KERSUNWIND

KER$UNWIND was designed to be called by both the VAXELN C and
Pascal run-time libraries and by user programs. To accommodate the
needs of these different callers, KERSUNWIND provides a flexible
calling sequence that allows its caller to specify either an absolute
number of call frames to be unwound or a target frame to which the
stack should be unwound. (The VAXELN run-time library also provides
a procedure called SYS$UNWIND, which emulates its namesake under
the VMS operating system.) This section describes the options available
to the caller of KER$SUNWIND and how the procedure modifies its
execution depending on the type of unwind operation requested.

6—-48 Condition Handling

KER$UNWIND takes three arguments: a status argument, a new PC
argument, and a depth, or new FP, argument. The optional new PC
argument supplies the address at which execution should resume after
the stack has been unwound.

The value supplied as the new FP argument significantly affects the
operation of KER$UNWIND. These four values specify the following
operations:

¢ A frame pointer value (assumed to be any value greater than
65,535): Unwind to a specific frame. The PAS$GOTO and
longjump routines specify a target FP when they call KER§UNWIND;
therefore, no signal need be active when the procedure is called.
This represents an optimized path through KER§UNWIND. In this
case, KERSUNWIND skips its usual search for an active condition
handler and simply searches down the call stack for the specified
frame.

As it searches, it modifies all intervening frames so that they will
be automatically unwound when KER$UNWIND exits. If a new
PC has been specified, it is placed in the saved PC field of the call
frame above the target frame on the stack.

* A depth greater than 0: Unwind that number of frames. In this
case, KERSUNWIND first searches for an active condition handler.
If no handler is found, the error status KER$_NOSIGNAL is re-
turned. Therefore, this call can be made only from a handler or
from a procedure called by a handler.

Once it has found the handler, KER$UNWIND counts down the
stack from the handler to find the call frame at the specified depth.
It then modifies all the frames up to the target frame so that they
will be automatically unwound when KER$UNWIND exits. If a
new PC has been specified, it is placed in the saved PC field of the
call frame above the target frame on the stack.

¢ A depth of 0: Unwind to the frame that called the establisher of the
handler. Again, a handler must be active for this call. Once it has
found the handler, KER$UNWIND finds the frame that established
the handler. It then knows that the target frame — the caller of
the establisher — is one frame further down the stack.

Next, KER$UNWIND modifies all the frames up to the target frame
so that they will be automatically unwound when KER$UNWIND
exits. If a new PC has been specified, it is placed in the saved PC
field of the call frame above the target frame on the stack.

Condition Handling 649

* A depth of -1: Unwind O frames. Again, a handler must be active
for this call. Once it has found the handler, KER$UNWIND simply
returns — unwinds zero frames. If a new PC has been specified,
it is placed in the saved PC field of the call frame above the target
frame on the stack. In general, unwinding 0 frames means to
return execution to the frame that raised the signal. Supplying a
new PC in this case allows the caller to resume execution at a new
location within that frame. This is the main purpose for unwinding
0 frames.

6.7.2.2 A Sample Unwind

Figure 6-10 illustrates how KER$UNWIND manipulates the return
PCs in the call frames on the stack to effect the return of control to
the target frame. The example begins with the same sequence shown
in Figure 6-8. Procedure A calls procedure B, which calls procedure
C. Procedure C generates signal S. Handlers CH and BH, located by
KER$DISPATCH_EXCEPTION, resignal.

Handler AH is then called. AH decides to unwind the stack back to
the frame that established it, procedure A. To accomplish this, AH calls
KER$UNWIND with a depth argument equal to the value contained in
the depth argument of the mechanism array (the frame argument can
also be used). In this example, the depth argument is 2. After the call
to KER$UNWIND, which executes in the access mode of its caller, but
before the frame modification occurs, the stack appears as shown on
the left side of Figure 6-10.

6-50 Condition Handling

Figure 6-10:

Call Frame Modification by KER$UNWIND

Call Frame for
KERSUNWIND

Call Frame for
Handler AH

©

Signal and
Mechanism Array
for Condition
Located Here

Call Frame for
Procedure C

Call Frame for
Procedure B

©

Call Frame for
Procedure A

Call Frame on Entry
to KERSUNWIND

0

Save Mask and PSW

Saved FP

AHH (if established)

Save Mask and PSW

Saved FP

KERS$CALL_HANDLER_PC

Mechanism Array

Argument Count

Signal Name

Exception PC in C

Signal
Array

CH (if established)

Save Mask and PSW

Saved FP

Return PC in B

BH (if established)

Save Mask and PSW

Saved FP

Return PC in A

AH

Save Mask and PSW

Saved FP

Return PC in A's Caller

A

To Previous
Frame

Return PC in These Frames

After They Have Been
Modified by KERSUNWIND

Return PC in AH

UNWIND_HANDLER

Mechanism Array

Argument Count

Signal Name

UNWIND_FRAME

UNWIND_FRAME

(Alternate Return PC)

Return PC in A's Caller

MLO-003234

Condition Handling 6-51

The frame modification now proceeds as follows (the numbers refer to
the numbers shown in the figure):

@ The stack is searched until a condition handler is located; a
handler’s frame is marked by having the value of KER$CALL_
HANDLER_PC as its saved PC. (This search occurs only when the
procedure is called with a depth argument; if it is called with an FP
value, no search for a handler frame is conducted.)

If KER$UNWIND is called with a depth argument, the first call
frame modified is the frame of the first handler in the stack, in this
case, the frame for AH. Therefore, if AH had called a procedure
that then called KER$UNWIND with a depth argument of 2, that
nested procedure’s frame would not be altered by KER$UNWIND.

® KER$UNWIND’s own frame is not modified. When KER$UNWIND
exits, control returns directly to AH.

© The frame for AH is modified. The saved PC in its call frame is
replaced with the address UNWIND_HANDLER, a routine internal
to KER$UNWIND.

All return PCs of handler frames encountered on the way to the tar-
get frame are replaced with the address of UNWIND_HANDLER.
This routine forces the handler to return a continue status and
then transfers control to KER$CALL_HANDLER_PC in module
EXCEPTION to clear the mechanism and signal arrays from the
stack.

O The exception PC in the mechanism array is replaced with the ad-
dress of UNWIND_FRAME, a routine internal to KER$UNWIND.

When signal S is dismissed, execution continues on the frame

of procedure C at UNWIND_FRAME. UNWIND_FRAME checks

to see whether C has established a handler. If so, that handler

is called. When it returns, UNWIND_FRAME executes a RET
instruction on behalf of procedure C, returning execution to the call
frame for procedure B.

If a handler called from UNWIND_FRAME attempts to unwind the
stack by calling KER$SUNWIND with a depth argument, its call will
fail with the status SS$_UNWINDING, indicating that an unwind
is already in progress.

© The return PCs in additional frames on the stack are modified (how
this is done depends on whether the frame belongs to a condition
handler or to a normal procedure). This modification continues
until the target frame has been reached in the stack.

6-52 Condition Handling

(6]

In the example, the return PC in the frame for procedure C, be-
cause it is not a handler, is replaced with the address of UNWIND_
FRAME.

If the alternate PC argument was also passed to KER$UNWIND,
the saved PC in the frame that will return to the target frame —
that of procedure B — is replaced with the specified PC value.

Once the frames have been modified, the actual unwinding occurs in
the following sequence:

1.
2.

3.

KER$UNWIND returns control to handler AH.

When AH issues a RET instruction, control continues on the frame
for procedure C at UNWIND_HANDLER.

UNWIND_HANDLER sets the low bit in RO to force AH’s re-
turn status to continue. Control then branches to KER$CALL_
HANDLER_PC in module EXCEPTION, which clears the condi-
tion arrays off the stack, restores RO and R1, and issues an REI
instruction to dismiss the signal.

The REI pops the address of UNWIND_FRAME into the PC, where
execution continues on procedure C’s frame.

UNWIND_FRAME performs the following steps:

a. If a handler is established for this frame, it is called with the
signal name SS$_UNWIND.

b. If either RO or R1 is specified in the register save mask,
UNWIND_FRAME replaces the value of the register in the
register save area of the call frame with the current contents of
the register. (This is an unusual case; the VAX procedure call-
ing standard specifies that RO and R1 are to be used to return
status codes and function values.)

c. Control is returned with a RET instruction to whatever address
is specified in the saved PC of the current call frame.

The RET issued by UNWIND_FRAME discards the call frame for
procedure C, passing control again to UNWIND_FRAME, this time
on the frame for procedure B. UNWIND_FRAME again performs
its three steps on behalf of procedure B.

The RET that discards the call frame for procedure B passes control
back to the point in procedure A following the call to procedure B,
(if no alternate return PC was specified) where execution will
resume.

Condition Handling 6-53

In effect, UNWIND_HANDLER and UNWIND_FRAME simulate re-
turns from each nested procedure that is being unwound. These pro-
cedures never again receive control. However, the target procedure
receives control as if all the nested procedures had returned normally.

6.7.2.3 Unwinding Multiple Active Signals

KER$UNWIND modifies its actions slightly when multiple signals are
active and it has been called with a depth argument. Before modifying
saved PCs, KER$UNWIND counts down the call frames in the stack
to find the target frame for the unwind. It normally counts down the
number of frames specified by the depth argument, beginning with
the frame after the frame of the first condition handler. The frame

it reaches when the count is exhausted is the target frame for its
modification sequence.

When multiple active signals are present, KER§UNWIND parallels
the action of the SEARCH procedure in module EXCEPTION (see
Section 6.6.3.3); that is, it skips over the frames that were searched
for a handler while the first signal was active. KERSUNWIND skips
these frames by stopping its countdown until it reaches the frame that
established the handler called in response to the first signal. (None
of this applies when KER$UNWIND is called with a frame argument,
because that frame’s FP value is already known.)

The example of multiple active signals shown in Figures 6-8 and 6-9
can illustrate the modified unwinding. Recall that procedure A called
procedure B, which called procedure C, which signaled S. Handler CH
resignaled. Handler BH called procedure X, which called procedure Y,
which signaled T. Handlers YH, XH, and BHH all resignaled. Finally,
handler AH was called for signal T with a depth of 3.

If AH calls KER$UNWIND with a depth argument of 3 (to unwind
to its establisher), the top of the stack is as shown in Figure 6-11.
Assume that no alternate PC argument was specified.

6-54 Condition Handling

Figure 6-11: Modified Unwind with Multiple Active Signals

0 l— FP
Call Frame for
KER$UNWIND Save Mask and PSW
Saved FP

Saved PC in AH

A

AHH (if established)

Call Frame for
Handler AH Save Mask and PSW

Saved FP

KER$CALL_HANDLER_PC

Signal and 2
Mechanism
Arrays for Signal Array
Signal T
Mechanism Array]

4

To Signal Array
in Figure 5-10

MLO-003235

The end result, then, of the operation of KER§UNWIND is as follows:

1. The stack is searched for a condition handler’s frame; in this case,
AH’s frame is found.

The saved PC in this frame is eventually replaced with the address
of UNWIND_HANDLER, and the exception PC in the signal array
for signal T is replaced with the address of UNWIND_FRAME.

2. The countdown of the stack begins. The first frame is that of
procedure Y. The saved PC in this call frame is replaced with the
address of UNWIND_FRAME. This is the first frame.

3. The next frame is that of procedure X. The saved PC in this frame
is also replaced with the address of UNWIND_FRAME. This is the

second frame.

Condition Handling 6-55

4. The next frame on the stack belongs to BH, which was called as
a condition handler (its saved PC is KER$CALL_HANDLER_PC).
Its associated mechanism array is located by climbing over saved
registers and stack alignment bytes. From this array, the frame of
BH’s establisher (B) is obtained.

The PCs in all the frames that were not counted will eventually be
modified. In this case, these are the frames for BH and C.

5. The count resumes with the frame that established BH, procedure
B. Since B was not called as a handler, it is counted as frame
3, and the countdown is complete. KERSUNWIND now knows
that the target frame for the unwind is the frame that called B:
procedure A.

The saved PC in B will not be modified. When it returns, execution
will continue in procedure A after the call to B.

6-56 Condition Handling

Chapter 7
Errorand Event Reporting

The VAXELN Kernel and certain VAXELN subsystems can monitor
their functioning and that of their associated hardware and software for
the occurrence of errors. When errors and events occur, the VAXELN
error-logging subsystem enables the software to report them in a local
or remote error log file. Some errors, such as internal processor errors
called machine checks, may require the shut-down of the system;
others errors may require that a process be forced to exit. The kernel
can shut down the system or force a process to exit using its bugcheck
mechanism.

This chapter describes the following components of VAXELN’s sys-
temwide error reporting and handling systems:

* The error-logging subsystem, which enables the kernel and system
jobs, such as device drivers, to report errors and other events in a
local or remote error log file. See Section 7.1.

¢ The kernel’s bugcheck handling mechanism. See Section 7.2.

* The kernel’s machine-check handling mechanism and support for
recovery from machine checks. See Section 7.3.

7.1 Error Logging Subsystem

The components of the error-logging subsystem are designed to mini-
mize the kernel’s role in logging errors, especially in systems that do
not select support for error logging from the System Builder. Therefore,
the kernel component of the error-logging subsystem comprises a small
set of subroutines that allocate error message buffers and insert them
into a queue of posted buffers. The larger component of the subsystem

Error and Event Reporting 7-1

exists as a job, called the ERRFORMAT job, that removes the buffers
from the posted queue and writes them to the error-log file.

If error-logging support is included in a system, the ERRFORMAT job
is included in the system image and begins to run at system initializa-
tion. A system without error logging enabled has no ERRFORMAT job
and contains only the small core of kernel subroutines, which performs
no significant function when a loggable event occurs. Only when error
logging is included do these subroutines operate in full, and, even then,
they execute a minimal number of instructions to post log entries for
processing by the ERRFORMAT job.

The following sections describe the components and operation of the
error-logging subsystem in greater detail, focusing on the following
aspects of the system:

* The errors and events reported by the subsystem

¢ The components of the subsystem, including its major data struc-
tures, the ERRFORMAT job, and the error-log server that runs on
a VMS system to support remote error logging

* The operation of the subsystem in logging an error or event

7.1.1 Errors and Events Reported by the Error-Logging Subsystem

The following errors and event are logged by the error-logging subsys-
tem:

¢ Device errors. The peripheral mass storage devices that may be
attached to VAXELN systems and supported by the error-logging
subsystem consist of disk and tape drives using MSCP and TMSCP
interface hardware and device drivers. Devices that do not use
the VAXELN MSCP and TMSCP class drivers are not currently
supported by the error-logging subsystem. The drivers report both
controller/device hardware errors and media errors (such as bad
block replacement).

* Machine checks. A machine check is an exception that results
when the processor or an external adapter or controller detects a
hardware error. Because machine checks are processor-specific,
each VAX processor or processor class supported by the VAXELN
has its own machine-check handler. The handler deals with the
processor-specific portions and provides an interface to the kernel’s
uniform condition-dispatching logic and bugcheck mechanism.

7-2 Error and Event Reporting

Machine-check handlers may also log the following processor-
specific hardware error:

— Bus errors
— Cache errors
— Soft (recoverable) and hard (unrecoverable) memory errors

Machine-check handling is described in Section 7.3.

Bugchecks. When the VAXELN kernel detects an internal inconsis-
tency, such as a corrupted data structure or unhandled exception, it
declares a bugcheck. If the system can continue running, a nonfatal
system bugcheck is declared, an error-log record is posted, and the
system continues operating.

In the case of a serious error whose effect on the system’s integrity
is uncertain, a fatal system bugcheck is declared to perform an
orderly shut-down of the system. The contents of any posted error-
log buffers, including those holding the bugcheck information, are
written to the system’s dump file before the system shuts down.

Bugcheck handling is described in Section 7.2.

Last-fail information. In the event of a fatal system bugcheck, the
kernel dumps as much information as possible about the state of
the system to the console terminal and, if the system dump facility
is enabled, to a dump file on a local disk. When the system is next
booted, the information in the dump file is recovered and written to
the error-log file as error/event log entries.

System service messages. Certain error conditions (such as being
unable to initialize the crash dump subsystem or dump file) cause
system service error-log entries to be posted. These entries consist
of up to 255 bytes of ASCII text and are intended to assist in the
evaluation and analysis of the final error-log report produced by the
VMS Error Formatting Utility (ERF).

The mechanism for generating these log entries is provided

by the procedure ELN$LOG_EVENT, which is included with

the ERRFORMAT module when error logging is selected. The
ELNS$LOG_EVENT procedure expects two arguments: the size of
the message string and its address.

System start-up. An error-log record entry is made for each suc-
cessful system start-up or restart. System start-up can occur in one
of the following circumstances:

— Cold start, the initial bootstrap load of the system

Error and Event Reporting 7-3

— Warm start, the automatic restart of the system following a
power failure

¢ Mass-storage volume activities. Whenever a disk or tape volume
is mounted on a local mass storage device, the details of each
mount/dismount transaction are recorded in an error-log record
entry. A volume mount/dismount transaction contains information
such as the generic device name, device unit number, volume label,
and, on dismounts, unit error count. The VAXELN File Service
is responsible for posting all volume activity record entries to the
error-logging subsystem.

¢ New file creation. Whenever the error-logging subsystem creates
a local log file, a record recording that event is written to the
log. The creation of remote log files is not record directly by the
local system; instead, that activity is written by the VMS host
error-logging server (ELSE).

¢ Time stamps. The VAXELN error-logging subsystem posts a time-
stamp record entry every ten minutes. Posting these time-stamped
records provides a chronological audit trail of the normal operation
of the system — information valuable when sporadic or intermittent
system failures must be isolated.

7.1.2 Components of the Error-Logging Subsystem

The error-logging subsystem contains a number of components that
support logging errors and events to both local and remote locations.
The following sections describes these parts of the subsystem:

* Error-logging data structures

* The kernel subroutines that support error logging
¢ The ERRFORMAT job

* The system dump facility

* The error-logging server (ELSE)

7.1.2.1 Error-Logging Data Structures

The error-logging subsystem relies on a number of kernel data struc-
tures and global values. The following sections describe the error
message buffer, which contains the data for the error-log entry, and the
system global values and structures that support logging those buffers
to the error log.

7-4 Error and Event Reporting

7.1.2.1.1

Error Message Buffers

Error message buffers (EMBs) are allocated each time a hardware

or software event is to be logged. EMBs are allocated by the kernel
subroutine KER$ALLOCEMB from a queue of available EMBs located
at KER$GQ_EMB_AVAIL. These 512-byte buffers hold the information
used to create an error-log entry.

Every EMB has a header, the EMB header, used by the kernel, and
an EMB record header, used in error-log analysis. The EMB header
contains the address linkages used to insert the EMB into the kernel’s
EMB queues for later processing. Table 7-1 shows the fields in an
EMB header.

Table 7-1: EMB Header Fields

Field Meaning

EMBS$A_FLINK Link to the next and previous EMB
EMB$A_BLINK

EMB$W_SIZE The size in bytes of this EMB’s log entry, not

including the EMB header itself

The EMB record header contains information required by the VMS
Error Log Utility in the generation of an error log report. Table 7-2
shows the fields in an EMB entry record header.

Table 7-2: EMB Record Header Fields

Field Meaning

ERLS$L_SID The system identification
ERL$W_HDRREV The header revision level
ERL$L_SYS_TYPE The contents of the system-type register
ERL$L_SMP_ID The unique processor identifier

ERL$T NODENAME The SCS node name

ERL$W_FLAGS Error log entry flags

ERL$W_ENTRY The error log entry type

ERL$Q_TIME The time the entry was posted
ERL$W_ERRSEQ The error sequence number

Error and Event Reporting 7-5

The ERL$W_ENTRY field in the record header defines the type of the
log entry for later analysis. This field can take one of the values shown
in Table 7-3. The type value is inserted in the ERL$W_ENTRY field
when the kernel initializes the record header before posting the EMB.

Table 7-3: Error-Log Entry Types and Their Values

Type Symbol Value Meaning
ERL$K_MACHINECHK 2 Machine check
ERL$K_SOFTERROR 6 Soft memory error
ERL$K_ASYNCWRITERR 7 Asynchronous write error
ERL$K_HARDERROR 8 Hard memory error
ERL$K_BIADPERR 18 VAXBI adapter error
ERL$K_BIBUSERR 19 VAXBI bus error
ERL$K_CACHEBUSERR 24 Bus/cache error
ERL$K_COLDSTART 32 Cold system start
ERL$K_NEWFILE 35 New log file creation
ERL$K_WARMSTART 36 Warm system start
ERL$K_CRASHRESTART 37 Crash-restart
ERL$K_TIMESTAMP 38 Time stamp
ERL$K_SYSSERVMSG 39 System service message
ERL$K_SYSBUGCHK 40 System bugcheck
ERL$K_VOLMOUNT 64 Volume mount
ERL$K_VOLDISMOUNT 65 Volume dismount
ERL$K_DEVATTENTION 98 Asynchronous device atten-
tion
ERL$K_SOFTPARAMS 99 Software parameter
ERL$K_LOGGEDMSG 100 Logged message
ERL$K_LOGMSCP 101 Logged MSCP message
ERL$K_PROCBUGCHK 112 Process bugcheck

The remainder of the EMB contains information specific to the error
or event being logged. For example, the EMB for a volume mount or
dismount contains information such as the device and unit number, the
device name, the owner’s UIC, and the volume label.

7-6 Error and Event Reporting

The pool of EMBs is created during system initialization, when the
number of physical pages corresponding to the global parameter
KER$GW_EMB_COUNT is allocated and mapped into system ad-
dress space. This number is divided by two; the result becomes the
global value KER$GW_MAX_POSTED, which is used as the threshold
at which the ERRFORMAT job is awakened when the pool of EMBs
has been half depleted.

As each EMB is mapped, it is inserted as an entry in the queue of free
EMBs pointed to by the global structure KER$GQ_EMB_AVAIL. The
EMBs are zeroed when they are removed from the queue for use.

Preallocated EMBs, called the crash-restart logs, are also created
during system initialization. One page of physical memory is mapped
and zeroed as a crash-restart log for each processor in the system.

A crash-restart EMB is used to hold the information that explains a
system shut-down.

7.1.2.1.2 System Data ltems

A number of global data elements that support error logging reside in
the system data block. Table 7—4 shows these values and their roles in
error logging.

Table 7-4: System Data Iltems That Support Error Logging
Field Meaning

KER$GA_CRASHLOG An array of addresses of crash-restart EMBs
used in logging fatal system bugchecks.

KER$GA_ERRFMT _JCB The address of the job control block for the
VAXELN ERRFORMAT job. The kernel uses
this JCB to activate the ERRFORMAT job.

KER$GB_ERRLOG_ A Boolean value that indicates whether the user

ENABLE selected error logging in the System Builder. If
the lower bit of this byte is set, error logging is
enabled.

KER$GL_ERRFMT _ The identifier value for the event object used to

WAKEUP control the execution of the ERRFORMAT job.

Error and Event Reporting 7-7

Table 74 (Cont.): System Data Items That Support Error Logging

Field Meaning
KER$GQ _DEVICE_ The queue of device objects waiting for process-
QUEUE ing by the kernel. The kernel places the event

object associated with the ERRFORMAT job in
this queue to force its execution to flush the
queue of posted EMBs. See Section 11.3.2 for
more information about the device queue.

KER$GQ_EMB_AVAIL The listhead for the queue of available EMBs.

KER$GQ_EMB_POSTED The listhead for the queue of posted EMBs
waiting to be flushed to the error-log file.

KER$GW_EMB_COUNT The number of EMBs in the system, as indicated
on the Error Log Characteristics Menu. The
minimum number of EMBs is 2.

KER$GW_EMB_SIZE The size in bytes of an EMB, currently 512.

KER$GW_ERRSEQ The error sequence number. This value is
increased each time an attempt is made to
allocate an EMB and post an entry to the
error-log file. Gaps in the sequence number, as
reflected in the error log, indicate a failure to
allocate an EMB for an error-log entry.

This value is updated using the ADAWI inter-
locked instruction, which synchronizes access to
the sequence number.

KER$GW_MAX_POSTED The maximum number of EMBs that can be
posted before the ERRFORMAT job will write
them to the error log file. This value is half the
value of KER§GW_EMB_COUNT.

7.1.2.2 Kernel Error-Logging Components

A small core of error-logging support resides in the kernel, regardless of
whether the error-logging subsystem has been included in the system.
This kernel-resident code is executed when attempts are made to log
errors and events; if the error-logging subsystem is not present, control
returns immediately to the original instruction stream.

The kernel core includes the following internal subroutines (in module
ERRORLOG) to support error logging:

¢ The KERSALLOCEMB subroutine allocates error message buffers.
See Section 7.1.3.1.1.

7-8 Error and Event Reporting

e The KER$COLDSTART and KER$WARMSTART subroutines post
start-up and power-failure recovery log entries, respectively.

¢ The KER$INIT ERLHEADER subroutine, called by KERSRELEASEM
initializes an EMB record header.

¢ The KER$POST ERRORLOG procedure inserts an EMB into the
queue of posted EMBS. This procedure calls the kernel subroutines
KER$SALLOCEMB and KERSRELEASEMB to allocate and post the
EMB.

¢ The KER$RELEASEMB subroutine releases error message buffers
by inserting them into the queue of posted EMBs, so that the
ERRFORMAT job can remove them and write them to the error-
log file. The subroutine also calls KER$§WAKEUP to activate the
ERRFORMAT job if the threshold of posted EMBs has been ex-
ceeded. See Section 7.1.3.1.1.

e KER$WAKEUP activates the ERRFORMAT job by causing its event
object to be signaled. See Section 7.1.3.2.

7.1.2.3 ERRFORMAT Job

The ERRFORMAT job, an optional component in the error-logging
subsystem, is responsible for reading the queue of posted error-log
entries and writing them to the error log file. It is also responsible for
inserting time stamps and posting new-file-creation messages to local
log files. When the system is restarted, if last-fail information has been
written to the system dump file on a local disk, ERRFORMAT retrieves
it and posts it to the error log file. See Section 7.1.3.3.

7.1.2.4 System Dump Facility

The system dump facility writes last-fail information to a local dump
device for later recovery by the error-logging subsystem. It does not
require any user action: if there is a system crash (fatal system
bugcheck), the last-fail data will be recovered on the next system reboot
if error logging is enabled. The error-log file can then be transferred to
a VMS system for analysis with the ERF utility.

The system dump device must be a local disk. A device driver dis-
patcher and a hard-coded, minimally functional driver is incorporated
into the final system image for which last-fail dumping is enabled.
When last-fail information is to be written to disk, the dispatcher is
called to select the proper dump driver to perform all I/O to the dump
device.

Error and Event Reporting 7-9

7.1.2.5 Error-Logging Server

VAXELN provides for remote logging of errors over the Ethernet to

a VAX system running under the VMS operating system and partic-
ipating in the same local area network. The VMS system runs the
error-logging server (ELSE), which accepts error-logging messages
transmitted over the Ethernet from the VAXELN system. The server
writes the error log to a file on the VMS system, pointed to by the logi-
cal name ELSE$ERRORLOG, which can be read and formatted by the
VMS Error Log Utility.

ELSE may have up to 20 virtual circuits established at any given time.
Each circuit represents a connection to a VAXELN system that has
elected to use the remote logging feature of the error-logging subsys-
tem. ELSE writes a separate error log file for each VAXELN system

it serves and uses the System Communication Services (SCS) node
name or number to create the error log file name. For example, if the
VAXELN node PIGDOG uses the remote logging server, the error-log
file created by ELSE will be named PIGDOG.SYS.

7.1.3 Error-Logging Operation

The following sections describe the actual operations of the error-
logging subsystem, namely:

* The posting of an error or event directly from the kernel and from
a job, such as a device driver

* The awakening of the ERRFORMAT job to write out EMBs

* The operation of the ERRFORMAT job

7.1.3.1 Posting an Error or Event

When an error or event occurs, a record of its occurrence must be
posted to the error log by the kernel. Errors or events logged from job
level are posted with the KER$POST_ERRORLOG kernel procedure.
This procedure is the general interface to the error-logging subsystem
and is provided for Digital-supplied device handlers. Within the kernel
itself, this procedure interface can be bypassed, and error-log entries
can be posted directly by manipulating the EMB queues. The following
sections describe these two approaches to posting an error-log entry.
The kernel-level operation — the basis for KER$POST _ERRORLOG —
will be described first.

7-10 Error and Event Reporting

7.1.3.1.1 Posting Error-Log Entries from Kernel Level: KER$ALLOCEMB and
KER$RELEASEMB

In certain instances in the operation of the kernel, error-log en-

tries can be made without invoking the formal posting procedure
required from job context. When system start-ups, system and
process-level bugchecks, and processor-specific entries are logged,

the kernel posts them directly by calling the internal subroutines
KER$ALLOCEMB and KER$RELEASEMB. Both KER$ALLOCEMB
and KER$RELEASEMB use interlocked queue instructions to synchro-
nize access to the EMB queues.

When posting an error or event, the kernel first obtains a free EMB
by calling the internal subroutine KER$ALLOCEMB. If the buffer

is available, the kernel then initializes the EMB record header. The
failure of KER$ALLOCEMB to allocate a buffer marks the end of the
kernel’s processing of the error or event, whether or not the system has
error logging enabled.

The subroutine KERSALLOCEMB expects the size of the requested
EMB as an input value and returns the address of the allocated EMB’s
record storage area. The routine executes as follows:

1. An attempt is made to remove an EMB from the head of the queue
of available EMBs (KER$GQ_EMB_AVAIL) using a VAX interlocked
queue instruction. If the allocation fails, KER$GW_ERRSEQ is
increased by 1, and a null EMB address is returned. The kernel
will make no further attempt to post the error or event to the error
log.

2. The size of the EMB is set in the EMB$W_SIZE field of the EMB
header.

3. The EMB, including the EMB record header, is zeroed.

4. The address of the initialized EMB’s record storage area is returned
to the caller.

If the allocation of the EMB succeeds, the kernel fills in the entry-
specific fields and then passes the error-log entry type and the ad-
dress of the allocated EMB to the KERSRELEASEMB subroutine.
KER$RELEASEMB initializes the remainder of the EMB record header
and inserts the EMB into the queue of posted EMBs. This subroutine
is also responsible for tracking the number of posted EMBs and calling
KER$WAKEUP, described in Section 7.1.3.2, if the number exceeds the
threshold value. KER$RELEASEMB executes as follows:

1. The error sequence number KER$GW_ERRSEQ is increased by 1.

Error and Event Reporting 7-11

A call is made to the internal subroutine KER$INIT ERLHEADER_
S to initialize the entry’s record header. The routine expects two
inputs: the error log entry type and the address of the EMB.

The EMB is inserted at the tail of the queue of posted entries,
KER$GQ EMB_POSTED, with an interlocked queue instruction.

The number of posted entries, KER§GW_CNT_POSTED, is up-
dated, and a check is made to see whether the threshold has been
exceeded. If not, the routine returns.

If the threshold has been exceeded, a call is made to the internal
subroutine KER$WAKEUP to unblock the ERRFORMAT job, which
actually writes the error log records to the log file.

7.1.3.1.2 Posting Errors and Events from Job Level: KER$POST_ERRORLOG

To post an error in the error log, jobs call the KER$POST_ERRORLOG
kernel procedure with arguments indicating the type of log entry to

be made, the address of the entry record text, and the size of that
text. This procedure builds a shell around the kernel subroutines
KER$ALLOCEMB and KER$RELEASEMB, which cannot be called
directly from a job. The MSCP and TMSCP class drivers use this
procedure to log errors and events for their associated devices.

KER$POST _ERRORLOG executes as follows:

1L

The size of error-log entry text is compared to the size of the EMB
remaining after the size of the record header and EMB header are
taken into account. If the text does not fit into the remaining space,
KER$_BAD_VALUE is returned to the caller.

Control branches to KER$ALLOCEMB to allocate an EMB.

If KER$ALLOCEMB returns a null address, the allocation has
failed, and the procedure simply returns success status. The entry
is not logged. The loss of the log entry will be reflected by a gap in
the sequence number. If error-logging support is not enabled, the
kernel makes no further attempt to log the error.

The error log text is copied into the EMB following the record
header.

The entry type and the address of the now completed EMB are
passed to the KERSRELEASEEMB subroutine to post the error log
entry.

The procedure returns with success to its caller.

7-12 Error and Event Reporting

7.1.3.2 Awakening the ERRFORMAT Job with KER$WAKEUP

The mechanism that awakens ERRFORMAT is of particular impor-
tance in the error-logging operation, because the kernel must be able to
awaken the job from kernel or user mode, from process or system con-
text, at any IPL, and from any processor in a tightly coupled symmetric
multiprocessing configuration. The only mechanism that guarantees
that capability is the KER$SIGNAL_DEVICE procedure, which can be
issued from any context and at elevated IPLs — conditions under which
interrupt service routines, from which it is usually called, operate.

The kernel subroutine KER$WAKEUP, when called by KER$RELEASEME
performs the equivalent of calling KER$SIGNAL_DEVICE for
ERRFORMAT’s event object. The KER$WAKEUP takes the following
steps to get the job running:

1. A check is made to determine whether ERRFORMAT is present
in the system by testing the value of KER$GA_ERRFMT_JCB.
If the value is zero, then ERRFORMAT is not present and the

routine returns. If the value is nonzero, it represents the address
of ERRFORMAT’s JCB.

2. The type field in the object pointed to by KER$GA_ERRFMT_JCB
is checked to confirm that it is a JCB. If not, the routine returns.

3. Using the JCB, the event object identifier in KER$GL_ERRFMT _
WAKEUP is translated to the address of the object. If the object is
not an event object, the routine returns.

4. The event object is inserted into the device signal queue, whose
listhead is located at KER$GQ DEVICE_QUEUE. (The structure
of an event and a device object share several fields that allow the
event object to be treated as a device object.)

5. If the object is not the first entry in the queue, the routine returns,
because at least one device object has already been signaled. If it is
the first entry, then an IPL software interrupt is request to signal
to interrupt and initiate the processing of the device wait queue.
This technique guarantees that ERRFORMAT can be awakened
at any IPL from either system or process context. Section 11.3.2
describes device signaling in greater detail.

Error and Event Reporting 7-13

7.1.3.3 Operation of the ERRFORMAT Job

The ERRFORMAT job is responsible for removing EMBs from the
posted queue and writing them to the error-log file. The job is created
because the System Builder includes it in the list of jobs that require
initialization at system start-up. When ERRFORMAT initializes, it
completes the following activities:

1.

It obtains its job arguments. These arguments indicate the logging
method (local disk or network) and, for local disk, the location of
the disk and log file.

If the error-log destination is the network, ERRFORMAT creates a
port to be used for sending error-log messages to ELSE.

It saves the address of its JCB as the global value KER$GA _
ERRFMT_JCB. This address is used in waking up ERRFORMAT
when the EMB threshold has been reached.

It creates an event object to use to block its execution until it is
awakened to write out EMBs. The identifier for the event object
becomes the global value KER$GL_ERRFMT_WAKEUP.

It initializes its time-stamp interval (10 minutes). When this
interval expires, the job awakens to post a time-stamp entry in the
error log.

It calls the kernel procedure KERSINTIALIZATION_DONE to
indicate that it has completed its initialization code.

It determines the logging method, either local or remote. If logging
is to a local disk, then ERRFORMAT attempts to recover any last-
fail information that may have been dumped to the disk following a
system crash. The contents of the dump file are treated as standard
EMBs and are written to the current error-log file. If the system
dump facility is currently included, the dump device and dump file
are initialized.

It enters a closed loop to write EMBs to the error log file. If no
EMBs require processing, the job calls KER§WAIT_ANY to wait
until it is reactivated by the kernel.

It wakes up every ten mintues to post a time-stamp entry and poll
the states of the system’s processors.

The ERRFORMAT job is activated by the kernel, as described in
Section 7.1.3.2, when any of the following conditions is true:

The job is created by the start-up job.

7-14 Error and Event Reporting

¢ The number of posted EMBs exceeds the threshold value in
KER$GW_MAX_POSTED.

¢ The time-stamp interval expires.

When reawakened, ERRFORMAT first determines the cause. If the
time interval expired, a time-stamp log entry is posted with a call to
the KER$POST_ERRORLOG procedure, and the running processor’s
status is polled with a call to KER§POLL_MACHINE. KER$POLL_
MACHINE polls for processor-specific error conditions. Any errors
detected are handled on a processor-specific basis.

If the event was signaled because the EMB threshold was reached, the
event object KER$GL_ERRFMT_WAKEUP is first cleared for the next
wait. ERRFORMAT then runs down the queue of posted log entries
and writes a record for each to the log file or over the network. After
an entry is dispatched, ERRFORMAT returns the processed EMB to
the queue of available buffers. When all the buffers have been written
out and returned to the available queue, ERRFORMAT again waits,
and the loop continues for the life of the system.

If entries are to be logged to a local disk, the log file must be opened. If
that file cannot be opened, the logged entries are lost. When the file is
being created, the first record written is a new-file-creation entry. The
subsequent log entries are appended to the end of the file. When the
last record has been written to disk, the file is closed.

If entries are to be logged remotelyy, ERRFORMAT must first initiate
the network link to the remote error-logging server (ELSE) by creat-
ing a DECnet virtual circuit and establishing a communication link
with the ELSE server. ELSE must be running before the attempt to
establish the circuit is made. If the circuit connection fails, then status
is returned to indicate that the remote error-logging link cannot be
established.

Once the circuit to ELSE has been established, log entries are pro-
cessed by creating a VAXELN message, transferring the contents of
the EMB to the message buffer, and sending the message with the
KER$SEND procedure. If the message cannot be sent, the message is
deleted, and the appropriate error status is returned, which will result
in the log entry being lost.

Error and Event Reporting 7-15

7.2 Bugcheck Handling

A bugcheck is declared whenever the kernel or a job detects an internal
inconsistency, such as a corrupted data structure or an unexpected
exception. Bugchecks can be fatal or nonfatal and can be systemwide
in scope or affect only a single process. Nonfatal bugchecks result in
an error-log entry being posted and the system or process continuing
execution. Fatal process-level bugchecks can force the process to exit,
whereas fatal system bugchecks can result in an orderly shut-down of
the system.

The kernel bugcheck mechanism is invoked through the execution of
the BUG_CHECK marco. For example, if the kernel cannot create the
start-up job during system initialization, it forces the system to shut
down by issuing the following fatal system bugcheck:

BUG_CHECK CRESTARTUP, FATAL

The bugchecks that the kernel uses for its own purposes are issued at
an elevated IPL in kernel access mode.

The BUG_CHECK macro, which takes a bugcheck reason code and
severity as its arguments, generates the VAX opcode FF, which results
in a reserved or privileged instruction fault (SS$_OPCDEC, opcode
reserved to DIGITAL), causing control to be transferred to the exception
service routine KER$DIGITAL_RESERVED (in module EXCEPTION).
This routine determines whether the operand specifier is either FE,
for a word-length bugcheck reason code, or FD, for a longword-length
reason code. KER$DIGITAL_RESERVED then transfers control to

the kernel’s bugcheck handler, the KER$BUG_CHECK subroutine in
module BUGCHECK.

KER$BUG_CHECK performs several steps, depending on the access
mode in which the bugcheck occurred, the IPL at the time of the
bugcheck, and the severity level in bits <2:0> of bugcheck reason code.
The combination of these factors determine whether the bugcheck is

fatal.
Four kinds of bugchecks are possible, with the following results:

* Nonfatal process-level bugcheck. The access mode can be user or
kernel, IPL is 0, and the severity code is nonfatal. The bugcheck
is logged, and the process is allowed to continue execution at the
instruction following the bugcheck invocation.

7-16 Error and Event Reporting

¢ Fatal process-level bugcheck. The access mode can be user or
kernel, IPL is 0, and the severity code is fatal. The bugcheck is
logged, and the KER$EXIT procedure is called to force the process
to exit with KER$_BUGCHECK exit status.

¢ Nonfatal system bugcheck. The access mode is kernel, the IPL is
greater than 0, and the severity code is nonfatal. The bugcheck
is logged, and the system is allowed to continue execution at the
instruction following the bugcheck invocation.

* Fatal system bugcheck. The access mode is kernel, the IPL is
greater than 0, and the severity code is fatal. The system is shut
down as follows:

1. A 512-byte bugcheck data block containing the reason and
hardware context for the crash is constructed.

2. Information describing the bugcheck is written to the console.

3. If the system dump facility is enabled, the bugcheck informa-
tion, crash-restart data, and any posted error-log buffers are
written to the local dump device.

4. Execution enters a closed loop at IPL 31 to halt the normal
operation of the system.

For fatal system bugchecks, a crash-restart error-log entry is con-
structed. It contains the bugcheck reason code and the contents of the
general and internal processor registers and the processor-specific reg-
isters. The crash-restart log entry record is built in a preallocated EMB
in system address space at the location pointed to by the global value
KER$GA_CRASHLOG, since this is the only address space from which
I/O can be performed at this point.

In a multiprocessing configuration, each processor participates in the
fatal system bugcheck sequence by independently saving its individ-
ual processor context. However, after an individual processor saves
its context and its identifier, it signals the other processors to shut
down, leaving only one to complete the shut-down of the system. Since
it is not known whether any remaining processors are capable of ac-
knowledging the request to shut down, a ten-second wait is executed,
after which it is assumed that the shut-down of all other processors is
complete and the crash sequence can continue.

In the final moments before the system is halted, the bugcheck logic
outputs last-fail information to the system console terminal. The last-
fail information consists of the following items:

* The text of the message giving the reason for the bugcheck

Error and Event Reporting 7-17

¢ The name of the job that was running when the bugcheck occurred
and the value of its job port (if any)

¢ The contents of the general processor registers
¢ The contents of the kernel or interrupt stack (if possible)
¢ The final shut-down message

Following the console dump, several checks are made to determine
whether the dump facility is enabled, whether the dump device and
its dump control block (DCB) are valid, and whether the dump device
has been initialized. If all these tests are successful, the virtual ad-
dress of the dump file I/O buffer is calculated, and a dump file header
is initialized and written to the dump file. Next, the bugcheck and
crash-restart information for the specific processor (or processors in

a multiprocessing system) is written to the dump file. Finally, any
posted EMB entries that have not been output to the error-log device
are written to the dump file, and the dump device is disconnected.

At this point, a check is made to see whether the currently executing
processor is the processor that crashed. If it is, a final system shut-
down message is output to the console. In any event, the processor
then enters an infinite loop at IPL 31 until the system is manually
restarted.

7.3 Machine-Check Handling

A machine check is an exception that results when the processor de-
tects an internal error in itself. VAXELN machine-check handling is
supported by a series of subroutines in the kernel that are executed
when a machine check occurs. These routines, called machine-check
handlers, are entered through vectors in the system control block
(SCB).

The initial processing of a machine check depends on the processor
type. The goal of a machine-check handler is to keep as much of the
system running as possible. To accomplish this goal, the machine-check
handler must evaluate several pieces of information that determine
how serious a specific machine check is: the nature of the machine
check itself and the access mode and interrupt priority level (IPL) at
which the machine check occurred.

The following sections provide an overview of machine-check handling
under VAXELN and describe the mechanism used to protect the system
from fatal machine checks during certain operations.

7-18 Error and Event Reporting

7.3.1

Machine-Check Handlers

The machine-check handler for each processor type or class is included
when the kernel image for that type or class is created. In addition

to machine checks initiated through the machine-check hardware
vector, there may be other hardware error vectors that can be ser-
viced by the machine-check handler. These errors include correctable
read data errors (CRDs), memory errors (bus errors, uncorrectable
ECC error, nonexistent memory), or bus adapter errors (for example,
NBIA errors on VAX 8000-series processors). The individual modules
(MCHECKnnn) supply detailed information on the specific operation of
a given machine-check handler.

In general, machine-check handlers process machine checks and other
hardware errors as follows:

1. A check is made to see whether a machine-check recovery block is
in effect. If so, a machine-check recovery sequence is invoked (see
Section 7.3.2 for a description of this recovery mechanism). If no
recovery block is in effect, or if error logging is not inhibited by
the recovery block function mask, one or more error-log entries are
posted.

2. If the machine check occurred at user IPL (0) in either access
mode, the error is reflected back to the process as a machine-check
exception condition as follows:

a. A PSL and PC at the time of the machine check are copied onto
the kernel stack. These value will become the exception PSL
and PC in the exception signal array.

b. Control is transferred, in kernel mode, to the machine-
check exception service routine KERSMCHECK in module
EXCEPTION.

c. KER$MCHECK completes the creation of the signal array
by pushing the signal name, KER$_MACHINECHK, and the
argument count, 3, onto the stack.

d. Control is transferred to the system’s uniform condition-
handling mechanism at location KER$REFLECT in module
EXCEPTION, which reports the machine-check exception
to the offending process (see Section 6.6, Uniform Condition
Dispatching).

Error and Event Reporting 7-19

3. If the machine check is unrecoverable and occurred in kernel mode
at an elevated IPL, it is considered fatal. A further determination
must be made: whether to take a fatal system bugcheck or to
attempt to recover with a machine-check recovery block. If no
recovery block is in effect, a fatal system bugcheck is taken, and
the system begins an orderly shut-down.

4. Depending on the processor type, a record is kept of the interval
between occurrences of certain machine checks. If these machine
checks begin to occur too rapidly (that is, they exceed a minimum
threshold, usually one every second), the system is considered to be
“out of control,” and a fatal system bugcheck is taken.

7.3.2 Machine-Check Recovery: KER$MACHINECHK_PROTECT

By establishing a machine-check recovery block, code running in kernel
mode at an elevated IPL can avoid taking a fatal system bugcheck
when a machine check occurs. A recovery block is a section of code pro-
tected by a special kernel mechanism. Some of the kernel’s processor-
specific initialization code uses this mechanism to intercept machine
checks that are raised when an I/0 bus is probed for adapters that may
not be present.

To be protected by a recovery block, an assembly-language routine
must pass two arguments to the KEREMACHINECHK_PROTECT
subroutine (in module ERRORLOG):

¢ The address of the instruction following the protected block of code

¢ A mask that defines what functions are allowed in the event of a
machine check (for example, inhibit error logging or nonexistent
memory)

For example, the routine to configure I/O address space on VAX 8000-
series processors (in module INIT8NN), protects its probing of the bus
by calling KER$MACHINECHK_PROTECT, as shown in Figure 7-1.
The kernel macro MCHKPRTCT_INIT generates the subroutine call
to KERSBMACHINECHK_PROTECT, passing it the function mask and
the address of the instruction following the protected code in general
registers. The protected code itself is a single MOVL instruction that
attempts to read a CSR on an NBIA adapter that may or may not
exist. If the adapter does not exist, a machine check is raised, and the
recovery mechanism is activated. The kernel macro MCHKPRTCT_
END marks the end of the protected code by providing a Return from

7-20 Error and Event Reporting

Subroutine (RSB) instruction and the actual label to mark the restart
of the unprotected code.

The function mask specifies parameters for the machine-check re-
covery. Table 7-5 shows the kernel symbols (defined in module
KERNELDEF) for the function mask and their effect when passed
to KERSMACHINECHK_PROTECT.

Table 7-5: Machine-Check Recovery Function Masks

Function Symbol Meaning

MCHK$M_LOG Inhibit logging of this error.
MCHK$M_MCHK Protect against machine checks.
MCHKS$M_NEXM Protect against nonexistent memory errors.

MCHKS$M_ADAPTER Protect against adapter error interrupts.

Figure 7-1: The Use of KER$MACHINECHK_PROTECT

MCHKPRTCT INIT B*20$, - ; Protect against machine checks
#<MCHKS$ M _NEXM ! MCHKSM_MCHK ! MCHK$M_LOG>
pushal B~20$
pushl #<MCHK$M NEXM!MCHKS$M MCHK! MCHK$M_LOG>

jsb G KER$MACHINECHK_PROTECT
MOVL NBIASL_CSRl(RlO),R3 ; Protected code: read CSR 1
MCHKPRTCT_END 208 ; End of protected code

rsb

208:
BLBC RO, 308 ; If lbc, nothing at this NBIA,

; that is, a machine check occurred

KER$MACHINECHK_PROTECT provides protection from fatal ma-
chine checks as follows:

1. The address of the machine-check recovery block for the current
processor is obtained from the processor’s machine-check data
block.

Error and Event Reporting 7-21

2. The function mask argument is copied to the recovery block. This
mask will be used by the machine-check handler if the protected
code causes a machine check.

3. Interrupts are disabled by raising the IPL to 31.

4. The protected code is called back as a subroutine. It uses the
return PC of the protected code that was pushed onto the stack by
the subroutine call to KER$MACHINECHK_PROTECT.

5. The protected code executes as a subroutine.

6. If the protected code does not generate a machine check, it executes
the RSB instruction generated by the MCHKPRTCT END macro,
and control returns to KERSMACHINECHK_PROTECT, which
cleans up the stack and returns status to the caller at its previous
IPL. Execution then continues at the return address specified in
the call to KERSMACHINECHK_PROTECT — the instruction
following the protected code. The status value returned indicates
whether a machine check occurred while the recovery block was in
effect.

If the protected code generates a machine check, control is vectored
by the processor through the SCB to the machine-check handler.
The handler determines that a machine-check recovery block is in
effect, clears the machine check, and transfers control to the subrou-
tine KER$MACHINECHK_BUGCHK, which performs the following
operations:

1. The function mask is examined to determine that recovery from a
fatal machine check was enabled in the call to KER$MACHINECHK _
PROTECT.

2. The stack is unwound to its state before the subroutine call to
KER$MACHINECHK_PROTECT. The call frame for the previous
call, the machine-check frame, and the stack arguments for the
original subroutine call to KER§MACHINECHK_PROTECT are all

cleared from the stack.
3. The access mode and IPL of the caller are restored.
4. The machine-check code is saved for inspection by the caller’s code.
5. Control is returned to the code following the protected code block.

The code following the protected block may then continue and take
whatever action is required after determining the cause of the machine
check (if any action is required at all). The result is that the protected
code block survives a potentially fatal machine check. The survival of
the protected code guarantees the execution of some critical function for

7-22 Error and Event Reporting

the application or enables it to handle peculiarities of special hardware
that would normally generate a machine check.

Error and Event Reporting 7-23

Chapter 8

Kernel Procedures and Procedure
Dispatching

Most of the operations that the VAXELN Kernel performs at the re-
quest of VAXELN processes are implemented as procedures called
kernel procedures. The majority of these procedures are the public,
KER$ procedures described in the VAXELN documentation. Others
are internal, private, procedures invoked on behalf of user jobs by
the kernel or other system components, such as the debugger and the
error-logging subsystem.

A call to a public or internal kernel procedure transfers control of
execution to a small procedure in the kernel called a kernel vector. The
code in the vector takes a minimal number of steps to transfer control
to the actual code of the requested kernel procedure. When control
returns to the vector after the execution of the procedure, the vector
code returns procedure and status values and control to the caller.

All but a few of the kernel procedures execute in kernel access mode,
allowing them to manipulate data structures protected from access by
jobs running in user mode (VAXELN employs only these two of the
four modes defined by the VAX architecture). Control is transferred
from a kernel-mode procedure’s kernel vector to the procedure code
itself through the kernel’s change mode to kernel (CHMK) dispatcher.
The majority of these kernel-mode procedures also execute at elevated
interrupt priority level (IPL) to synchronize access to job and system
data structures.

Kernel Procedures and Procedure Dispatching 8-1

A handful of kernel procedures execute in t