PROGRAMMING
AND
BUILDING

VAXELN SYSTEMS

Student Guide

DIGITAL EDUCATIONAL SERVICES
READING ENGLAND



PROGRAMMING
AND
BUILDING

VAXELN SYSTEMS

Student Guide

DIGITAL EDUCATIONAL SERVICES
READING ENGLAND



First Edition, March 1987

The information in this document is subject to change without
notice and should not be construed as a commitment by Digital
Equipment Co. Ltd. Digital Equipment Co. Ltd. assumes nho
responsibility for any errors. that may appear in this document.

Copyright © 1987 by Digital Equipment Co.. Ltd.

All rights reserved

Printed in U.K.



CONTENTS

CHAPTER 0 INTRODUCTION TO COURSE

1 COURSE OBJECTIVES . . « ¢« ¢ ¢ « o o ¢« « o« o« « « o 0
2 BEFORE ATTENDING THIS COURSE . . . . . . . . . . . O
.3 DOCUMENTATION FOR THE COURSE . . . . . . « . « « . O-
4 OBJECTIVES OF THIS STUDENT GUIDE . . . . . . . . . O
5 ABBREVIATIONS USED IN THIS HANDOUT . . . . . . . . 0
6 CONVENTIONS USED IN THIS HANDOUT . . . . . . . . . O

CHAPTER 1 VAXELN CAPABILITIES AND APPLICATIONS

l.1 THE NATURE AND PURPOSE OF VAXELN . . . . . . « « . 1~1
1.2 VAXELN SYSTEM COMPONENTS . . .« % c. ¢ o ¢ o o o o o 1-1
1.3 FUNCTION OF THE VAXELN KERNEL -..©. . . . . . . . . 1-2
1.4 A SIMPLE VAXELN APPLICATION . . . . . ¢« « + « . o 1-3
1.5 DEVELOPING A SIMPLE APPLICATION . . . . . . . . . 1-5

CHAPTER 2 VAXELN EXTENSIONS TO ISO PASCAL
2.1 SOURCE TEXT '« « & « « o o o o o o o o o o o« o o « 2-1
2.2 DATA TYPES +« « « « « « « o o o o o « o+ o o o « o « 25
2.3 ATTRIBUTES FOR DATA SIZING . . « « « « « « « . . 2-10
2.4 CONSTANTS '« v v o o o o o o o o o o« o o o« o o+ 2-11
2.5 INITIALIZERS « v « « o o« o « o o o o o o o o « o 2-12
2.6 PREDECLARED NAMED CONSTANTS “. . & « « o + « . . 2-13
2.7 PREDECLARED ENUMERATED TYPES . . «. « « . « . . . 2-14
2.8 VARIABLES + &« « « o o ¢ ¢ o o o« o« o o« o o o o « 2-15
2.9 ALLOCATION OF STORAGE TO CONSTANTS AND VARIABLES 2-18
2.10 INITIALIZATION OF SHARED DATA . . . . . . . . . 2-20
2.11 EXPRESSIONS AND OPERATORS . + « « « « o« « « o« o 2-20
2.12 CONCATENATING STRINGS .« « o « « « o o « o o « o 2-21
2.13 STATEMENTS IN VAXELN PASCAL . « + &« &« « « « o . 2-21
2.14 PROCEDURES AND FUNCTIONS « v « « « « « ¢ o o o o 2-22
2.15 QUEUES « « « v o v o o o o o o o« o o o« o o o o o 2-23

CHAPTER 3 KERNEL OBJECTS AND THEIR USE
3.1 WHAT ARE KERNEL OBJECTS? + « o « ¢ « o o « o « « « 3-1

CHAPTER 4 PROGRAM DEVELOPMENT

4.1 COMPILING VAXELN SOURCES . ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o+ o+ 4-1
4.2 USING THE DCL COMMAND LINK . + ¢« o ¢ ¢ o o o o o 4-4



Page 2

CHAPTER 5 SYSTEM DEVELOPMENT
5.1 THE EBUILD COMMAND . . . . . &« « & ¢ s o o« &« « « & 5-1
CHAPTER 6 BOOTING AND DOWNLINE LOADING

BOOTING FROM DISK '« « ¢ « ¢ o« o o o o« o o « o o &
DOWNLINE LOADING . « ¢ ¢ v v o« o « . e e e e
CONFIGURING THE HOST NETWORK DATA BASE e e e e
CONFIGURING BOOTSTRAP LOADERS .-« & & & & « o « &
DOWNLINE LOADING . . . . . . . e e e e e e
RELOADING TARGETS THAT HAVE NETWORK SERVICE . . .
MONITORING NETWORK EVENTS . « + « &« & o « o o o &
PROBLEMS WITH DOWNLINE LOADING . « « « o « « « o &
PROBLEM BOOTING FROM DEQNA . . .+ « o« « o« o o o o &

« o o
[

.
]

-
1

OO DR
OO~ U dWwN
Qoaaaaaaan
DNV B BN

~

CHAPTER DEBUGGING

METHODS OF DEBUGGING . . . . ¢ ¢ ¢ ¢ ¢ o o o o o @
CHOOSING A DEBUGGING MODE . . . . « « ¢ o« o & & &
KERNEL DEBUGGING . « ¢ ¢ ¢ ¢ o ¢ o o o o o o o o &
PROGRAM DEVELOPMENT AND DEBUGGING . . . . . . .« .
EDEBUG COMMAND AND ITS QUALIFIERS . . . . . . . .
LOGICAL NAMES AND EDEBUG . . . ¢ « « & ¢ o o s o &
EDEBUG FACILITIES . ¢ « ¢ ¢ o « o o o o o o o oo
CONTROL-C SESSION . ¢ ¢ ¢ ¢ o ¢ o o o o o o o o o«
EDEBUG COMMANDS . &« & ¢ o« & o o o o o o o o o o &
0 SESSION LOGGING . o« o o o o o o o o o o o o o o o

.
[}

_.
1

NN SN SNNNNNNN
.

\l-|~l\l\l~ll~l\l~l\l
N e WWNNNDN -

PROCESSES, JOBS AND PROGRAM STRUCTURE

CHAPTER 8
8.1 JOB DEFINITION . . & ¢ ¢ o ¢ o ¢ o o o o s s s « o &1
8.2 PROCESS DEFINITION . . . «. « ¢ ¢ ¢ & ¢ o o o o« « « 8-1
8.3 PROGRAM DEFINITION . . & « ¢ ¢ « ¢ o o« o o « o« o o 8-1
8.4 ROUTINES IN VAXELN . . ¢ ¢ ¢ ¢ ¢ o o ¢ o o o o « o 8-2
8.5 COMPILATION UNIT . . «. ¢ « o o o o o o o o o« « o« o« 83
8.6 THE MODULE IN VAXELN . . . . « « ¢ ¢« ¢ « o « « « » 8-3
. 8.7 PROCESS STATES . . ¢« « « &« ¢« ¢ o o o o o s o o« « o 8-4
8.8 PROCESS PRIORITIES . . . « ¢ ¢ o ¢ o ¢« o« s « « « o 8-4
8.9 PROCESSES AND MEMORY MANAGEMENT . . . . . . . . . 8-4
CHAPTER 9. TECHNIQUES OF SYNCHRONIZATION

9.1 INTRODUCTION . ¢ & ¢ « ¢ o o o o o o o o o o s o &
9.2 WAIT PROCEDURES . ¢« ¢ & ¢« ¢ o o o o o o o o o o o
9.3 SATISFYING A WAIT FOR KERNEL OBJECIS . . . . . . .
9.4
9.5
5.6

THE MUTEX e o o o o e o o e o e o o e o o o o o

°
9
9
PROCEDURES FOR SYNCHRONIZATION . . « « « « « « « o+ 9=
9
SPECIFYING ABSOLUTE AND DELTA TIMES . . . . . « . $



CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

10

11

11.1
11.2
11.3
11.4
11.5
11.6
11.7

12

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9

13

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9

14.1
14.2
14.3

COMMUNICATION BETWEEN JOBS

INTRODUCTION . . . . . . . . . o« e e

COMMUNICATION WITHIN A SINGLE JOB ON A SINGLE

VAXELN NODE . . . ¢ ¢« ¢ ¢ ¢ o« o o o o &
COMMUNICATION BETWEEN MULTIFLE JOBS ON A
VAXELN NODE . . . ¢ ¢ ¢ v ¢ ¢ ¢ o o o &
MESSAGE PORTS . . ¢ ¢ « ¢ ¢ o o = o o &
SENDING AND RECEIVING MESSAGES . . . . .
MESSAGE TRANSMISSION METHODS . . . . . .
HINTS ON COMMUNICATION . . . . . . . ..

NETWORK FACILITIES

LOCAL AND REMOTE LINKS WITH CIRCUITS . .
DECNET MESSAGE SIZE . . ¢ « ¢ « « « o &
NAME SERVERS . . ¢ ¢ ¢ ¢« &+ o« ¢ ¢ o o o &
NODE IDENTIFICATION . . . . o« « & o o &
MANAGING YOUR VAXELN NETWORK . . . . . .
NCP COMMANDS SUPPORTED BY THE VAXELN. NML
CONNECTIONS TO AND FROM VMS . . . . . .

USING FILES

FILE ROUTINES . . o ¢ ¢ ¢ o o o o o o o

FILE OPENING AND CLOSING . . . . . « . .

INTERNAL AND EXTERNAL FILES . . . ... .

FILE TYPES ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o @
FILE ACCESS . ¢ ¢ ¢ ¢ ¢ o o o o o o o &

.RECORD TYPES . . . . . . . . . .« e e e

ENUMERATED TYPES USED IN FILE HANDLING .
FILE AND DEVICE SPECIFICATIONS . . . . .
REMOTE FILE ACCESS . . . ¢ ¢ « & « o o &

DEVICES, DRIVERS AND INTERRUPTS

INTRODUCTION . . & « ¢ ¢ ¢ o o o o o o
DEFINITIONS . . . . . . e s e e e

DRIVERS SUPPLIED WITH VAXELN e e e e e

INTERRUPT SERVICE ROUTINES . . . . « « .
DISABLING INTERRUPTS . . « ¢« « « o« o o &
INTERRUPT PRIORITY LEVELS . . .« .
UNEXPECTED INTERRUPTS - POWER FAILURE .
POWERFAIL RECOVERY ROUTINES . . . . . .
DEVICE INITIALIZATION ROUTINES . . . . .

SYSTEM SECURITY
INTRODUCTION . . &« « ¢ ¢ o o o ¢ o o o &

DEFAULT PROTECTION ON VAXELN . . . . . .
VAXELN SYSTEM SOFTWARE PROTECTION . . .

SINGLE

.

Page 3

10-1
10-2

10-4
.10-7
10-9
1Q-10
10-15

11-2
11-2
11-5
11-6
11-8
11-9
11-10

12-1
12-2
12-3
12-3
12-3
12-3
12-4
12-4
12-7

13-1
13-1
13-2
132
13-4
13-4
13~5
13-5
13~7

14-1
14-2
14-2



14.4
14.5
14.6
14.7
14.8

CHAPTER 15

21501
- '15.2
15.3
15.4
15.5
. 15.6
15.7
15.8
15.9
15.10
-15.11
;15,12
15.13

APPENDIX A

APPENDIX B

SRR R RN
MM ODONAUVEEe WN -

APPENDIX C

AUTHORIZATION FACILITIES . . . . . « « « .« &
SPECIFYING REMOTE DESTINATIONS . . . . . . .
INCLUDING AUTHORIZATION IN A SYSTEM . . . .

USING AND MAINTAINING THE AUTHORIZATION SERVICE

FILE SECURITY FACILITIES . . . « ¢« « « « « &

HANDLING EXCEPTIONS

INTRODUCTION . o ¢ v ¢ ¢ o o ¢ o o c 5 o o

DEFINITIONS

o 2 e e e 4 o © e © © o e 9

PROGRAM/PROGRAMMER RESPONSE TO EACEPTIONS .
CONDITION VALUES . . . ¢ ¢ ¢ o 5 o o o o o
THE SEVERITY FIELD IN CONDITION VALUES . . .
STATUS CHECKING . . . . e e e e e e e ..
EVENTS WHEN EXCEPTIONS ARE RAISED . . . . «
THE STACK
STACK AFTER EXCEPTION OCCURS . o « ¢ « o . o
POSSIBLE ACTION OF AN EXCEPTION HANDLER . .
EXCEPTIONS DURING EXCEPTIONS . . . . . . . .
ROUTINES FOR EXCEPTION HANDLING . . . . . .

- MESSAGE FACILITIES . .« ¢ ¢ & « ¢ s o o o o &

ASCII CHARACTER CODES

EXAMPLES OF LANGUAGE EXTENSIONS

EXAMPLE
EXAMPLE
EXAMPLE
EXAMPLE
EXAMPLE
EXAMPLE
EXAMPLE
EXAMPLE
EXAMPLE
EXAMPLE
EZAMPLE
EXAMPLE
EXAMPLE

OF
OF
OF
OF
oF
OF
OF
OF
OF
OF
OF
OF
OF

INTRODUCTION o« e e 0 e e s e e s e e e e

IDENT - SIMPLE.PAS . . . . . . .
$INCLUDE - INCLUDE_SOURCE.PAS . .
IMPORT AND EXPORT - IMPORT 1.PAS
INCLUDE - INCLUDE_L.PAS . . . . .
RADIX SPECIFIERS - RADIX 1.PAS .
SIZE ATTRIBUTES - ATTRIBS_1.PAS .
TYPECASTING - TYPECAST 1.PAS . .
SCOPE - SCOPE_1.PAS . . « « . . .
SCOPE - SCOPE 2.PAS . . . . . . .
SCOPE - SCOPE_3.PAS . . . . . . .
SCOPE - SCOPE 3A.PAS . . . . . .
SEPARATE - SEPARATE PROG_1.PAS .
AGGREGATE INITIALIZATION -

AGGREG L.PAS . & « « o o o o o o o o o o o »

EXAMPLES OF MODULES, PROGRAMS AND PROCESSES

EXAMPLE OF MODULE, PROGRAM AND PROCESS -
MOD-PROG-PROC-1.PAS . . . & ¢ ¢ ¢ o ¢ & o &
EXAMPLE OF MODULE, PROGRAM AND PROCESS -
MOD-PROG-PROC-1A.PAS . . « « « ¢ « o & .
EXAMPLE OF ERROR REPORTING - ERRORS_1. PAS .
EXAMPLE OF ERROR REPORTING - ERRORS_Z PAS .

Page 4

14-2
14-3
14-4
14-6
14-6

. C-1

. C_G
C-10
C-13



APPENDIX D

APPENDIX E

HEEEEm
AUV WN -

1 m
o o
O 00

APPENDIX F

F.l

APPENDIX G
G.1l
G.2
APPENDIX B

H.l

APPENDIX I

I.1

= O

EXAMPLES OF SYNCHRONIZATION AND TIME

EXAMPLE OF VAXELN TIME ROUTINES - TIME_1.PAS . . .
VAXELN RUNNING FORTRAN - TIME_2.PAS . .

EXAMPLE OF
EXAMPLE OF
EXAMPLE OF
TIME_3.PAS
EXAMPLE OF
TIME_4.PAS
EXAMPLE OF
EXAMPLE OF
EXAMPLE OF
EXAMPLE OF
EXAMPLE OF
EXAMPLE OF

VAXELN RUNNING FORTRAN - TIME_2A.PAS

VAXELN CALLING VMS FOR THE TIME -

e e o e o e o o o o o

USING VAXELN INTERNAL TIME VALUES

USING WAIT ROUTINE - SYNCH_l.PA .
WAITING FOR AN EVENT - SYNCH_2.PAS

WAITING FOR OBJECTS - SYNCH_3.PAS .
WAITING FOR A PROCESS - SYNCH_4.PAS

MUTEX - SYNCH_S5.PAS . .
MUTEX - SYNCH_6.PAS . .

EXAMPLES OF COMMUNICATION TECHNIQUES

EXAMPLE OF
EXAMPLE OF
EXAMPLE OF
EXAMPLE OF
EXAMPLE OF
EXAMPLE OF
COMM_6 . PAS
EXAMPLE OF
EXAMPLE OF
EXAMPLE OF

DATAGRAM COMMUNICATION
DATAGRAM COMMUNICATION
DATAGRAM COMMUNICATION .
DATAGRAM COMMUNICATION
AREA DATA SHARING - COMM

CoMM_1.PAS
CoMM_2.PAS
COMM_3.PAS
COMM_4.PAS
5.PAS . .

DATA PASSING BY JOB ARGUMENT -

USING CIRCUITS - COMM_7.PAS . . . .

USING CIRCUITS - COMM_8.PAS . . . .
USING CIRCUITS AND EXPEDITED MESSAGES
S COMM 9.PAS © &« v v v 4 & v o b e e e e e e

NETWORK EXAMPLE

v

EXAMPLE OF NETWORK USE - NET 1.PAS . . . . . . .

FILE HANDLING

EXAMPLE OF FILE ACCESS ROUTINES - FILE_1.PAS . .
EXAMPLE OF REMOTE FILE HANDLING - FILE 2..FOR

DEVICE DRIVER EXAMPLES

EXAMPLE OF SUPPLIED DRIVER - ELNS:LPVDRIVER.PAS

EXCEPTION HANDLING

EXAMPLE OF EXCEPTION HANDLING - EXCEPT_1.PAS . .

Page 5

1
-7
D-15
D-19

D-25
D-29
D-32
D-36
D~41
D~45
D-52

E-1
E-7
E-14
E-23
E-28
E-34
E-39
E-46

E-56

I-1



Page 6

APPENDIX J EXERCISES

APPENDIX K SOLUTIONS TO EXERCISES
. SOLUTION TO EXERCISE 1 - LAB_ 1.PAS . . . . . . . . K-1
. SOLUTION TO EXERCISE 1 - LAB_L F.FOR . . . . . . . K-7
. SOLUTION TO EXERCISE 1 - LAB_ 1 C.C . . . . . . . K-14

SOLUTION TO EXERCISE
SOLUTION TO EXERCISE
SOLUTION TO EXERCISE
SOLUTION TO EXERCISE
SOLUTION TO EXERCISE
SOLUTION TO EXERCISE
0 SOLUTION TO EXERCISE
1 SOLUTION TO EXERCISE
2 SOLUTION TO EXERCISE
3 SOLUTION TO EXERCISE
4 SOLUTION TO ‘EXERCISE
5
6
7
8

- LAB 2.PAS . . . . . . . K-20
- LAB_2A.PAS . . . . .. K-27
- LAB_2A_TDEFS.PAS . . . K-31
- LAB 2B.PAS . . . ... K-34
- LAB_2B_DEFS.PAS . . . . K-37
LAB 2 C.C....... K-40
- LAB_3.PAS . . . . . . . K-47
- LAB 3A.PAS . .. ... K-50
- LAB_4.PAS . . . . ... K-56
- LAB_4A.PAS . . . ... K-58
- LAB 4B.PAS . . .. .. K-62
- LAB 5.PAS . . . . . . . K-§7
- LAB 5A.PAS . . . . . . K-72
- LAB 6.PAS . . . . ... K78
- LAB 6A.PAS . . . ... K-81

SOLUTION TO EXERCISE
SOLUTION TO EXERCISE
SOLUTION TO EXERCISE
SOLUTION TO EXERCISE

AARAAARAAAARAAAARARRNRANNR

HEHECRHHEFFEEO®ONOU R WN

O VU ERWWNNNNNNRF R
|

.



ACKNOWLEDGEMENT

The author wishes to ackncwledge that sowe of the programs dealing with
real-time issues came from a course developed by the Real-time Product Support
Unit of the Atlanta Customer Support Center.

DEC Educational Services
Reading, England
March 1987






CHAPTER O

INTRODUCTION TO COURSE

0.1 COURSE OBJECTIVES

On completion of the course students should be able to:-
1. Describe the kernel objects used by a VAXELN system
2. Develop programs in a VAXELN-supported language on a host VMS system
3. Downline load a complete VAXELN system

4, Debug, from a remote host, a VAXELN system

0.2 BEFORE ATTENDING THIS COURSE
Participants should have a sound knowledge of:
1. VMS operating system (preferably V4.0 or later)
2. a language supported by VAXELN
These prerequisites may be achieved by attending a VMS Utilities and Commands
course and a Programming in (language) course respectively. Where language is a
lanqguage supported by VAXELN. Currently these languages are:
o Ada *
o C
o FORTRAN

O Pascal

*Ada is a registered trademark of the US Government, Ada Joint Program Office



INTRODUCTION TO COURSE

0.3 DOCUMENTATION FOR THE COURSE

Title

. VAX Language-Sensitive Editor VAXELN Pascal Guide

VAXELN
VAXELN
VAXELN
VAXELN
VAXELN
VAXELN
VAXELN
VAXELN
VAXELN
VAXELN

C Run-Time Library Reference Manual

Application Design Guide

Fortran Programmers Guide

Host System Guide

Introduction To VAXELN

Run-Time Facilities Guide

Pascal Language Ref. Manual Part l: Language Elements
Pascal Language Ref. Manual Part 2: Programming
Release Notes

Software Product Description

Order Number

AA-GR65B-TE
AA-EU40B-TE
AA-EU41B-TE
AA-HW72B-TE
AA-JG87A-TE
AA-JL11A-TE
AA-JM81A-TE
AA-JP29A-TE
AA-JNOSA-TE
AA-Z454F-TE
SPD 28.02.05

These documents are for Software Version 2.3 of VAXELN as of December 1986.

0.4 OBJECTIVES OF THIS STUDENT GUIDE

1.

2.

3.

to supplement, but NOT to replace, the documentation set

to provide additional examples and reference material

to gather useful data together from different sources

0.5 ABBREVIATIONS USED IN THIS HANDOUT

ADG - VAXELN Application Design Guide

HS - VAXELN Host System Guide

INTRO - Introduction to VAXELN

LRM - VAXELN Pascal Language Reference Manual

RF - VAXELN Run-Time Facilities Guide

RTL - VMS Run-Time Library Routines Reference Manual

SPD - VAXELN Software Product Description

Abbreviations and their definitions also appear in the index

0-2



INTRODUCTION TO COURSE

0.6 CONVENTIONS USED IN THIS HANDOUT

References to documentation appear thus: [HS:5-15] - meaning VAXELN Host System
Guide, chapter 5, page 15

This entire student guide was produced using Digital Standard Runoff. The table
of contents and index were created by using the RUNOFF/INTERMEDIATE,
RUNOFF/CONTENTS and RUNOFF/INDEX commands as appropriate.

0-3






CHAPTER 1

VAXELN CAPABILITIES AND APPLICATIONS

1.1 THE NATURE AND PURPOSE OF VAXELN

a VMS layered product - a toolkit

for real-time applications 1like industrial production, robotics,
process control

based on Pascal for easy design and programming. VAXELN Pascal is a
superset of ISO Pascal (as defined in ISO/DIS 7185).

no VMS operating system overheads present - uses the VAXELN kernel for
controlling software

requires VMS host for development work
provides a multitasking, multiprocessing system
supports file handling

network facilities available

1.2 VAXELN SYSTEM COMPONENTS

[sPD:1, INTRO:1-1, RF:1-1]

the VAXELN kernel controls software and resources
the software (programs) employed in the system are:
(a) DIGITAL supplied

(b) user-written

1-1



VAXELN CAPABILITIES AND APPLICATIONS

- one or more jobs - VMS definition of a job applies to VAXELN

- the hardware consists of one or more VAXs, peripherals, special

interfaces etc.

1.3 FUNCTION OF THE VAXELN KERNEL

[INTRO:3-1, RF: 1-8, SPD:1]

The VAXELN kernel is responsible for:
- manipulating objects called kernel objects
- controlling the sharing of resources
- providing synchronization and communication

The VAXELN kernel comes as a prepared image as part of the software issued
VAXELN is purchased.

1.3.1 User-written Programs
[INTRO:2-1, RF:1-4]
- device drivers
- special applications programs

- number crunchers etc.

1.3.2 DIGITAL Supplied Programs
[INTRO:2-1, RF:1-4]
- servers for file and network handling
- drivers - source code and images supplied

- VAXELN kernel - image form

1-2

when



VAXELN CAPABILITIES AND APPLICATIONS

1.4 A SIMPLE VAXELN APPLICATION
Before starting work on a simple VAXELN application we must satisfy ourselves

that we have the minimum hardware and software available to complete and run the
application.

1.4.1 Minimum Hardware And Software Requirements
1.4.1.1 Hardware Requirements -
[HS:1-1, SPD:7-8]
o Development system:.
(a) Microvax I
(b) MicroVAX II
(¢) any 700 series VAX

(d) any 8000 series VAX

o Target system:
(a) Microvax I
(b) MicroVax II
(c) VAX-11/725
(d) VAX-11/730
(e) VAX-11/750
(f) VAX 8500
(g) VAX 8550
(h) vax 8700

(i) K620



VAXELN CAPABILITIES AND APPLICATIONS

o Development system memory and space:
(a) at least 1 megabyte (Mb) of physical memory
(b) 2 Mb of virtual page file quota per user
(c) 250-page minimum working set per user
(d) 8 000 blocks of disk space for installation

(e) 7 500 blocks of disk space for permanent use

o Target system memory and space:

- at 1least 256 kilobytes (Kb) of physical memory made up of
components whose sizes are:

(a) kernel: 20 Kb

(b) language run-time: 128 Kb
(c¢) file service: 50 Kb

(d) network service: 24 Kb
(e) 1local debugger: 60 Kb

(f) remote debugger: 12 Kb

(g) device drivers: 2-7 Kb

o Target machine must have loading device from:
(a) Files-11 disk
(b) TUS8 cartridge tape
(c) TK50 if target is MicroVAX II

(d) Ethernet adapter DEQNA (DIGITAL Ethernet to Q-bus network adapter)
or DEUNA (DIGITAL Ethernet to Unibus network adapter)



VAXELN CAPABILITIES AND APPLICATIONS

1.4.1.2 Software Requirements -
o Development system:
(a) VMS or MicroVMS operating system
(b) DECnet-VAX for downline loading, remote debugging and
communications
o Target system:
(a) no software required

(b) VAXELN includes target system DECnet licence

1.5 DEVELOPING A SIMPLE APPLICATION

[INTRO:2-3, HS:1-2]

There are six stages in the development of a simple application:
l. edit the program to be run under the VAXELN system
2. compile the program created at 1

3. 1link the program's object code with the required library routines using
LINK

4. build the VAXELN system using EBUILD
5. prepare the target and host for downline loading

6. downline load the system to run the program

1-5



VAXELN CAPABILITIES AND APPLICATIONS
1.5.1 Creating A Simple Program
Use a standard VMS text editor to create a source text file. Typical
that you might use are:
o EDT
o EVE (Extensible VAX Editor)

0 LSE (Language Sensitive Editor)

EVE appeared with V4.2 of VMS but LSE is a layered product.

1.5.1.1 Simple Program In Pascal -

PROGRAM Simple (OUTPUT);

(*
MODULE: SIMPLE.PAS
*)
BEGIN
WRITELN ( 'A simple program to test VAXELN' );
END.

1.5.1.2 Simple Program In C -

main ()
/*
MODULE: SIMPLE.C
*/
{
printf( "A simple program to test VAXELN\n");
}

1.5.1.3 Simple Program In FORTRAN -
PROGRAM Simple
* MODULE: SIMPLE.FOR

IMPLICIT NONE

1-6

editors



VAXELN CAPABILITIES AND APPLICATIONS

WRITE (6, '('' A simple program to test VAXELN'' )' )

END

1.5.1.4 Compiling Our Simple Program -
[HS:2-1]

At your host VAX terminal issue the following command line:

$ EPASCAL /DEBUG SIMPLE ! For Pascal
$ FORTRAN /DEBUG /NOOPTIMIZE SIMPLE ! For FORTRAN
$ CC /DEBUG SIMPLE + ELNS$:VAXELNC/LIB ! For C

This produces the object file SIMPLE.OBJ containing binary code of our source
file plus debug information.

1.5.2 Linking OQur Simple Program

[HS:2-8]
At your host VAX terminal issue the following command line:

For Pascal:
$ LINK /DEBUG SIMPLE, ELNS:RTLSHARE /LIBRARY, -

_$ RTL /LIBRARY

For FORTRAN:
$ LINK /DEBUG /NOSYSLIB SIMPLE, ELNS$:FRTLOBJECT/LIB, -
_S RTLSHARE/LIB, RTL/LIB

For C:

$ LINK /DEBUG SIMPLE, ELN$:CRTLSHARE/LIB, RTL/LIB

This command links the object code of SIMPLE.OBJ with the VAXELN run-time
library and kernel to produce SIMPLE.EXE.

1.5.3 Building A VAXELN System

[HS:3-1]
At your host VAX terminal issue the following command line:

$ EBUILD SIMPLE



VAXELN CAPABILITIES AND APPLICATIONS

This reveals a main menu display. Using cursor arrow keys move to "Add Program
Description"” option. Hit the PF1l key which is the "DO" key. A new menu will
appear and the cursor is against the option "Program". Type in the name
"SIMPLE" and press PFl. We are returned to the main menu where we return the
cursor to "Build System" and press PFl.
The system is being built and, after a few seconds, a message appears giving a
full directory specification for SIMPLE.SYS;l1 followed by its size in pages and
kilobytes.
EBUILD produces two files:

- .SYS - the system image file - binary

- .DAT - menu selections - ASCII

For the simple program we've produced here the output from EBUILD 1looks
something like this:

System DISK$INSTRUCT:[SHONE.VAXELN]SIMPLE.SYS;1l
System image size is 285 pages (143K bytes)
and the .DAT file contains the single line:

program SIMPLE.EXE

1.5.4 Preparing For Downline Loading
The Network Control Program (NCP) must be run from your host VAX terminal to
check that the target node's details are in the database at the host. Issue the
command line:
$ RUN SYS$SYSTEM:NCP
When you receive the NCP> prompt issue the command:
NCP> SHOW NODE BEDLAM CHARACTERISTICS
Several lines of information may appear. For example:
Node Volatile Characteristics as of 30-MAY-1986 13:12:00
Remote node = 63.736 (BEDLAM)
UNA-O

AA-00-03-01-34-59
SYS$SYSROOT : [SYSMGR]SIMPLE.SYS

Service circuit
Hardware address
Load file

If no information is forthcoming please follow the instructions laid down at

1-8



VAXELN CAPABILITIES AND APPLICATIONS

[HS:4-4].

1.5.5 Downline Loading A Simple System

This involves informing the host VAX DECnet database of the file to send down
the Ethernet to the target machine.
For example issue the command:

NCP> SET NODE BEDLAM LOAD FILE DISK$INSTRUCT:[SHONE.VAXELN]SIMPLE.SYS

Next go to the target MicroVAX and place it in console mode. The procedure 1is
different for each type of MicrovaAX, as follows:

- MicroVAX I - depress the HALT button on the front panel TWICE

- MicroVAX II - first check that the HALT enable button on the KA 630
panel (at rear) is set to enable (dot in circle) then proceed as for
MicroVAX I

This halt operation produces a prompt thus >>> on the MicroVAX console terminal.
Enter the command B XQAO from the prompt and after a minute or two from pressing
<RET> you should see 'A simple program to test VAXELN' on the screen - your
simple program's output.

If you would like to downline load the same program using EDEBUG [HS:5-4]
onwards gives details. We shall be covering this alternative loading method in

more detail later in the course.

1-9






CHAPTER 2

VAXELN EXTENSIONS TO ISO PASCAL

2.1 SOURCE TEXT

[LRM:1-7, Program INCLUDE_SOURCE.PAS]
External source text may be included in a compilation using the construction:
$INCLUDE 'FILE_OPEN';
or %$INCLUDE 'FILE_OPEN/LIST';
or %$INCLUDE 'FILE_OPEN/NOLIST';
where FILE OPEN is of type .PAS

Whether listing is performed is decided ultimately by command qualifiers to
EPASCAL.

2.1.1 Identifiers In VAXELN Pascal
[LRM:1-2]

- Have a maximum length of 31

- Allowed characters are:
(a) 0123456789
(b) ABCDEFGHIJKLMNOPQRSTUVWXYZ
(c) abcdefghijklmnopgrstuvwxyz

(d) s and _

2-1



VAXELN EXTENSIONS TO ISO PASCAL

- the dollar character is best avoided in user-defined identifiers

because of possible clashes with DIGITAL-defined symbols.

2.1.2 Reserved Words In VAXELN Pascal

[LRM:1-2]

The following are additional reserved words in VAXELN Pascal:

FUNCTION_BODY

- INTERRUPT_SERVICE
- MODULE

- OTHERWISE

- PROCEDURE_BODY

- PROCESS_BLOCK

2.1.3 Program Structure

[(LRM:2-1, Program MOD-PROG-PROC-1.PAS]
In VAXELN Pascal programs are executed as jobs. A job is a master process and
zero or more subprocesses. The principal code segment of a job is called a

program block. Within a program block other routines may be invoked, for
example:

- standard Pascal FUNCTIONSs
- standard Pascal PROCEDUREs
- VAXELN Pascal process blocks
- VAXELN Pascal interrupt service routines
A process block is invoked using the procedure CREATE_ PROCESS. Interrupt

service routines are invoked asynchronously when a device interrupt occurs to
which the routine has been attached by a call to the procedure CREATE_DEVICE.

2-2



VAXELN EXTENSIONS TO ISO PASCAL

2.1.4 VAXELN MODULE

[LRM:2-6]
A VAXELN MODULE comprises:
- a set of outer-level declarations
- may contain module headers more explicitly specifying:
(a) names to be EXPORTed by the module
(b) names exported by others to it (IMPORTed)

(c) names of other modules to be used in the compilation

An example of the relationship between modules, programs and other routines
appears at [LRM:2-3].

2.1.5 Module Headers

[LRM:2-7]

- they may be preceded by comments

- may be followed by:
(a) EXPORT - the default for outer-level declarations
(b) IMPORT

(c) INCLUDE

- may use attributes:
(a) GLOBALDEF

(b) 1IDENT (string)



VAXELN EXTENSIONS TO ISO PASCAL

2.1.6 Export Headers

[LRM:2-9, Program IMPORT_l.PAS]

- list names to be exported

- names must be declared at outer level

- absence of EXPORT implies export of ALL outer-level declarations

- an empty EXPORT header is valid - may be used for separate routine body

- GLOBALDEF attribute implies all ordinal constants exported are

available to VMS linker as global values

2.1.7 Import Headers

[LRM:2-10, Program IMPORT_l.PAS]

- 1list names to be imported into compilation of module

- names are exported from another module

2.1.8 1Include Headers

[LRM:2-10, Program INCLUDE_l.PAS]

- 1lists object modules to be included in compilation

- may be affected by EPASCAL command qualifier



VAXELN EXTENSIONS TO ISO PASCAL

2.1.9 Program Block

[LRM:2-12]

~ the reserved word PROGRAM may be preceded by one of the attributes:
(a) UNDERFLOW
(b) NOUNDERFLOW
- only one PROGRAM block declaration is allowed in a complete VAXELN
Pascal program
- program may have string arguments of up to 100 characters per argument
~ arguments are specified either:
(a) when invoking CREATE_JOB or

(b) at system build time

Two functions are provided to permit access to program arguments:
(a) PROGRAM_ARGUMENT - to obtain value of argument

(b) PROGRAM_ARGUMENT COUNT - to obtain number of arguments

- when program execution completes a termination message may be sent to a
specified port if job containing it was created by CREATE_JOB with the
NOTIFY parameter

2.2 DATA TYPES

[LRM: 3-1]
2.2.1 Ordinal Types
Internal representation of ordinal types may be controlled by preceding their

declaration by one of the size attributes:

2-5



VAXELN EXTENSIONS TO ISO PASCAL

- BIT

BYTE

- WORD

LONG

2.2.2 Enumerated Types
[LRM:3-9]

- up to 32 767 named values

2.2.3 Set Types
[LRM:3-12]

- base type MUST be ordinal

- set of integer limited to values in range 0-32 766

2.2.4 Flexible Types

[LRM:3-17]

Flexible types are types with parameters that specify lengths or extents. The
three predeclared flexible types are:

- STRING
- VARYING_STRING
— BYTE_DATA

A flexible type is limited to one of four type definitions as follows:

2-6



VAXELN EXTENSIONS TO ISO PASCAL

- pointer to a bound flexible type
- another flexible type
- a record type

- an array type

2.2.5 Bound Flexible Type

[LRM:3-19]

To make use of a flexible type you must do the following to provide a bound
flexible type:

- specify a type name
- specify values for the extent parameters
For example:
TYPE
Matrix (x,y:1..10) = ARRAY [l..x,l..y] OF REAL;
VAR
Mat_A : Matrix(5,8);

Extents may be specified as ordinal-valued expressions in bound flexible type
definitions.

Extent expressions may also be used in the declaration of:
- CONST
- VAR

- upper and lower bounds of arrays

2.2.6 String Types
[LRM:3-23]

- sequence of 0 to 32 767 characters



VAXELN EXTENSIONS TO ISO PASCAL

- data types are:
(a) STRING

(b) VARYING_STRING

(In addition there is the standard Pascal PACKED ARRAY OF CHAR)

!
2.2,7 Array Types
[LRM:3-26]

- total number of dimensions not to exceed 8

- may be qualified by ALIGNED attribute

2.2.8 Record Types

[LRM:3-32, Program ATTRIBS_1.PAS]

- POS attribute is valid on field of packed record
- ALIGNED attribute is valid on a record

- ALIGNED attribute is valid on a field of a record provided that POS is

not present there

2.2.9 Pointer Types

[LRM:3-39]

- allowed to point to data type ANYTYPE
- ANYTYPE is completely unspecified

- "ANYTYPE implies that references to data must use typecasting

2-8



VAXELN EXTENSIONS TO ISO PASCAL

2.2.10 System Data Types
[LRM:3-45]

~ AREA - 32 bits
- DEVICE - 32 bits
- EVENT - 32 bits
- MESSAGE - 32 bits
- NAME - 32 bits
- PORT - 128 bits
- PROCESS - 32 bits

- SEMAPHORE - 32 bits

2.2.11 Miscellaneous Predeclared Data Types
[LRM:3-53]

- BYTE DATA - a number of 8-bit bytes

- LARGE_INTEGER - 64-bit integer

2.2.11.1 BYTE_DATA Data Type -

[LRM:3-53, Programs ATTRIBS_1.PAS, TYPECAST_1.PAS]

- no predefined operations on this type except:
(a) assignment

(b) argument passing

- parameters of BYTE DATA(n) are taken as compatible with data of any
size

2-9



VAXELN EXTENSIONS TO ISO PASCAL

- conformant BYTE DATA(<n>) are compatible with data of any size

- size of BYTE_DATA may be omitted in typecast operations

2.2.11.2 LARGE_INTEGER Data Type -

[LRM:3-54, Program TIME_1.PAS and others in Appendix D]

- signed integers but not ordinal
- useful for time values

- bit 63 is significant i.e. clear for positive and set for negative
values

2.3 ATTRIBUTES FOR DATA SIZING
[LRM:3-63, Appendix A]
- BIT (extent expression) [LRM:3-64, Program
ATTRIBS_1.PAS]
- BYTE [LRM:3-65, Program TYTPECAST_I.PAS]
- WORD [LRM:3-65, Program ATTRIBS_l.PAS]
- LONG [LRM:3-65]
- ALIGNED (extent expression) [LRM:3-65]

In using the BIT attribute the extent expression must produce an integer
constant in the range 1 to 32

ALIGNED is valid on:
- array type definition
- record type definition

- field in a packed record definition provided POS has not been used on
it

The extent expression used with ALIGNED must render an integer constant in the
range 0 to 2. These values have the following meanings:

2-10



VAXELN EXTENSIONS TO ISO PASCAL

- 0 - aligned on BYTE boundary
- 1 - aligned on WORD boundary

- 2 - aligned on LONG boundary

2.4 CONSTANTS

[LRM: 4-1]

The virtues of using constants wherever and whenever possible are just as
important in VAXELN as they are in any programming.

2.4.1 Non-decimal Radix Specifiers

[LRM: 4-3, Program RADIX_ 1.PAS]

From time to time it is convenient to specify a constant e.g. system symbol, in
its original radix e.g. hexadecimal. VAXELN Pascal allows this specification

2.4.1.1 Radix Specifiers: -
- %b or %B - binary (base 2)
- %o or %0 - octal (base 8)
- %x or %X - hexadecimal (base 16)

The specifier is followed by an unsigned series of digits with optional
apostrophes enclosing them e.qg.:

%b'10101010°
%B 01010101
%b '00010111 11101111 00000011 11100000'

The form that uses apostrophes allows embedded spaces and tabs permitting
formatting for improved legibility and clarity.

2-11



VAXELN EXTENSIONS TO ISO PASCAL

Note that the characters following a radix specifier must be valid for that
radix:

- binary -1, O

- OCtal - 0, l' 2, 3, 4' 5' 6' 7

- hexadeciml - 0' l' 2' 3, 4, 5' 6' 7, 8' 9, A, a, B' b' C' C,
D,d,E, e F, £
2.4.2 Non-printing Characters In Constants
[LRM:4-6, Module INCLUDE_l_DEFS.PAS]

To introduce non-printing character(s) into a string constant enclose ASCII
collating sequence value of character (returned by ORD function) in parentheses.

2.5 INITIALIZERS

[LRM:4-8]

o provide constant initial values for:
(a) variables in VAR section

(b) defaults for optional value parameters

For example:

VAR
Year: 1900..2099 := 1986;
Software: (VMS,RSX,RSTS,VAXELN) := VAXELN;
Pi: REAL := 3.14159;
Machines: SET OF (VAX, MicroVAX, PDP) := [vax];

PROCEDURE Ring bell (Rings : 1..15 := 1);

2-12



VAXELN EXTENSIONS TO ISO PASCAL

2.5.1 Initializing To Binary Zero

[LRM:4-10]
VAXELN Pascal provides the function ZERO. It is compatible with any data type.
For example

VAR
Counter : INTEGER := ZERO;
Average ¢ REAL ¢= ZERO;
RMS value : DOUBLE := ZERO;

2.5.2 1Initializing Arrays And Records (Aggregate Initialization)

(LRM:4-11, Program AGGREG_l.PAS]
Example

VAR
Matrix : ARRAY [1..3, 1..6, 1..9] OF 1..15 :=
(3 OF (6 OF (9 OF 2)));

Part_rec : RECORD
Marker BIT(1l) O0..1;
Total ALIGNED(2) REAL
END := (1, 0.0);

Care should be exercised in using any form of initializer for reasons detailed
at [LRM:4-12].

2.6 PREDECLARED NAMED CONSTANTS

[LRM:4-13]
Standard Pascal TRUE, FALSE and MAXINT plus:
0 ASSERT_CHECK_ENABLED - has values TRUE or FALSE

This constant is used to make execution of code dependent upon the presence of
the EPASCAL qualifier CHECK=ASSERT

2-13



VAXELN EXTENSIONS TO ISO PASCAL

2.7 PREDECLARED ENUMERATED TYPES

[LRM:4-14]

Enumerated Type

EVENT_STATE

FILE ACCESS

FILE_CARRIAGE_CONTROL

FILE DISPOSITION

FILE_HISTORY

FILE_RECORD_TYPE

FILE_SHARING

NAME TABLE

OPEN_CIRCUIT

QUEUE_POSITION

Values

EVENTSCLEARED,
EVENTS$SIGNALED

ACCESSS$SEQUENTIAL,
ACCESS$DIRECT

CARRIAGESLIST,
CARRIAGES$FORTRAN,
CARRIAGESNONE

DISPOSITIONSSAVE,
DISPOSITIONSDELETE

HISTORYSOLD,
HISTORYS$NEW,

HISTORY $UNKNOWN,
HISTORY$READONLY

RECORD$F IXED,
RECORD$VARIABLE

SHARES$NONE,
SHARESREADONLY,
SHARESREADWRITE

NAMESLOCAL,
NAMESUNIVERSAL,
NAME$BOTH

CIRCUITSCONNECT,
CIRCUITSACCEPT

QUEUESHEAD,

QUEUESTAIL,
QUEUESCURRENT

2-14



VAXELN EXTENSIONS TO ISO PASCAL

2.8 VARIABLES

[LRM:5-1]

Attributes may be applied to the declaration of variables. In particular the
following may appear:

o ALIGNED
o BIT

o BYTE

o0 EXTERNAL
o LONG

o READONLY
o VALUE

o WORD

The use of ALIGNED, BIT, BYTE, LONG and WORD has been described elsewhere

2.8.1 READONLY Attribute

[LRM:5-3, Appendix A]

o variable allocated in readonly storage

o variable must have an initializer unless EXTERNAL attribute also
applies

o variable must not be a file or contain a file

2.8.2 VALUE Attribute

[LRM:5-4, Appendix A]

o provides information to the VMS linker about data item

2-15



VAXELN EXTENSIONS TO ISO PASCAL

o

without EXTERNAL, name is available to linker as value of a global

symbol

with EXTERNAL, name is value to be supplied to 1linker by non-VAXELN
Pascal module

without EXTERNAL, declaration must have initializer

variable reference to item must be its name only - typecasting it is
forbidden

data type must be represented in less than or equal to 32 bits

data type must not have BIT attribute

2.8.3 EXTERNAL Attribute

[LRM:5-5; Appendix A, Program TIME_4.PAS]

o

o

variable is defined in non-VAXELN Pascal module

with additional VALUE attribute, item must be available to the VMS
linker as a global value

without VALUE attribute must be available as global symbol from another
module

2.8.4 Pseudo Variable References

[LRM:5-8]

Pseudo variable references may be formed when using the predeclared functions
SUBSTR [LRM:9-22] or ARGUMENT [LRM:9-42]:

o

invoking SUBSTR with a variable reference as its first argument
(string)

invoking ARGUMENT with a VAR parameter as its first argument
(parameter_name)

2-16



VAXELN EXTENSIONS TO ISO PASCAL
2.8.5 Typecast Variable References

[LRM:5-10, Programs TYPECAST 1.PAS, COMM_9.PAS]

Typecasting allows a programmer to relax, for one assignment, the strict rules
of Pascal regarding type compatibility. For example:

VAR

REAL;
INTEGER;

A :: INTEGER := B;

The double colon is the operator and there must not be a space between the two
colons. The named type - to the right of the operator - may be:

- a type name

- a bound flexible type

- a pointer to a type name

- a pointer to a bound flexible type

Typecasting to BYTE_DATA does not require a storage size specification, for
example:

VAR
A : REAL; B : INTEGER;

A :: BYTE DATA := B :: BYTE_DATA;

Typecasting to a flexible type allows arbitrary extent expressions not just the
special extent expressions. The expressions are evaluated each time the
typecast reference occurs. For example:

TYPE
List_type (n:INTEGER) = ARRAY[1l..n] OF REAL;

VAR
Data_list : List_type(20);

Dummy : INTEGER;
I ¢ INTEGER := 10;

Dummy := Data_list [ I*5/10 ] :: INTEGER;

2-17



VAXELN EXTENSIONS TO ISO PASCAL

Typecasting is not allowed on:
o literals

o named constants

2.8.6 Addresses Of Variables

[LRM:5-13]

Normally the virtual address of a variable may be found using the predeclared
function ADDRESS. However the ADDRESS function may not be used in the following
circumstances:

o data items not on a byte boundary

o when data type has bit al;gnment AND reference has a bit offset from an
addressable location

2.9 ALLOCATION OF STORAGE TO CONSTANTS AND VARIABLES
Details will be found on pages 18 and 19 of Chapter 5 in the VAXELN Pascal
Language Manual. It is worth noting that the data PSECT in a program is shared

by all processes in a job. Separate data PSECTs are created for new jobs
running a program that requires non-zero initializers.

2.9.1 Sharing Data Between Processes

(LRM:5-15]

Data may be shared by one or more processes in a job. The exceptions are:
0 local variables of routines
o value parameters

These items go into process private Pl virtual memory on the per-process stack.
Sharing of outer-level data may be achieved by:

o referencing a variable by name

2-18



VAXELN EXTENSIONS TO ISO PASCAL

O using pointers

O VAR parameters of process blocks

2.9.2 Shared Data - Care In Modifying

[LRM:5-15]

Several routines exist that perform atomic operations and can be used safely on
data shared by processes within a job:

o READ_REGISTER - predeclared procedure
o WRITE_REGISTER - predeclared procedure
o INSERT_ENTRY - predeclared procedure
O REMOVE_ENTRY - predeclared procedure

o ADD_INTERLOCKED - predeclared function

2.9.3 READ_REGISTER, WRITE_REGISTER

[LRM:5-15; 14-36 to 14-40]
These predeclared procedures, though intended for operations involving device
registers, provide a safe method for accessing and/or modifying shared

variables. The operation, in each case, is performed by a single appropriate
VAX instruction of the MOVE type.

2.9.4 |INSERT_ENTRY, REMOVE_ENTRY

[LRM:5-15; 10-5 to 10-9]
These predeclared procedures allow insertion and removal of entries from the

head or tail of a queue. The underlying single VAX instruction, INSQUE and
REMQUE respectively, is a non-interruptible instruction.

2-19



VAXELN EXTENSIONS TO ISO PASCAL

2.9.5 ADD_ INTERLOCKED

[LRM:5-20; 9-69]
This predeclared function allows addition of an integer in the range -32768 to
32767 to a target WORD integer (16 bits) by using a single VAX instruction, Add

Aligned Word Interlocked (ADAWI). This is a non-interruptible instruction and
will not permit multiple simultaneous access to a shared variable.

2.10 INITIALIZATION OF SHARED DATA

[LRM:5-16]
The recommended practice for shared outer-level variables is to initialize them

from the master process BEFORE subprocesses are created. This is a simple but
effective method of synchronization.

2.11 EXPRESSIONS AND OPERATORS

[LRM:6-1]

The additive dyadic and monadic operators are valid on LARGE_INTEGERs. Further,
LARGE_INTEGERs may be combined with INTEGERS.

2.11.1 Exponentiation Operator

[LRM:6-11]

VAXELN Pascal includes the exponentiation operator ** amongst its set of
arithmetic operators. The operands are restricted as follows:

o first operand - REAL or DOUBLE

o second operand - REAL, DOUBLE or INTEGER

2.11.2 Mixed Operands

[LRM:6-9]

2-20



VAXELN EXTENSIONS TO ISO PASCAL

The monadic operators + and - do not affect the result of their operation so far
as data type 1is concerned. The dyadic operators affect the result type as
follows:

First = - Second operand ---- -—-
operand INTEGER LARGE_INTEGER REAL DOUBLE
INTEGER INTEGER LARGE_INTEGER REAL DOUBLE
LARGE_INTEGER LARGE_INTEGER LARGE_INTEGER N/V N/V
REAL REAL N/V REAL DOUBLE
DOUBLE DOUBLE N/V DOUBLE DOUBLE

N/V = not valid

2.12 CONCATENATING STRINGS

[LRM:6-18, Program TIME_ 3.PAS]

To concatenate two string expressions use the dyadic addition operator '+'

2.13 STATEMENTS IN VAXELN PASCAL

[LRM: 7-1]

2.13.1 Labels

[LRM:7-2]
Labels in VAXELN Pascal may be either:
o literal integer constants - as ISO Pascal or
o a valid identifier
Explicit declaration of labels is not required as their use declares them

implicitly. However the LABEL declaration remains valid to conform, and remain
compatible, with ISO Pascal. This is recommended as good programming style.

2-21



VAXELN EXTENSIONS TO ISO PASCAL

2.13.2 CASE Statement

[LRM:7-9]

The standard Pascal CASE statement is extended by the addition of the OTHERWISE
clause. This allows some action to be defined if none of the cases is selected.
Without the OTHERWISE clause, failure to satisfy one of the cases causes a range
violation at run time. The range of values in the case constants must not

exceed 32 767.

2.14 PROCEDURES AND FUNCTIONS

[LRM:8-1]

There are a number of extensions to ISO Pascal. [LRM:8-1 ->] is definitive.

2.14.1 Declaring Procedures And Functions

[LRM:8-2]
Headings may include the following directives:
o FUNCTION_TYPE [Program LAB_l.PAS]
o PROCEDURE_TYPE
thus declaring a particular type of function or procedure:
FUNCTION Temperature (Old_temp : REAL) : REAL; FUNCTION_TYPE;
FUNCTION Celsius_to_Fahrenheit OF TYPE Temperature;
BEGIN .....
Other directives that may be used are:
o EXTERNAL
o FORWARD - standard Pascal

O SEPARATE

Separate and FORWARD inform the EPASCAL compiler that the text of the routine's
body is defined elsewhere while EXTERNAL indicates that the routine's body is

defined in another programming language

2-22



VAXELN EXTENSIONS TO ISO PASCAL

2.15 QUEUES

[LRM:10-1]

Queues are efficiently handled in VAXELN Pascal using the predeclared data type
QUEUE_ENTRY and the interface to the VAX instructions INSQUE and REMQUE provided
by the procedures INSERT ENTRY and REMOVE _ENTRY. Queues are started using the
procedure START_QUEUE. The definition of QUEUE_ENTRY provides a forward and
backward link just as in the queues manipulated by the VMS operating system.

2-23






CHAPTER 3

KERNEL OBJECTS AND THEIR USE

3.1 WHAT ARE KERNEL OBJECTS?

[INTRO:3-1, RF:2-1]

The kernel objects are data structures acted upon by the kernel and which
represent resources, processes etc. These objects are protected and are
inaccessible from programs except via special procedures. When one of these
procedures 1is invoked to create an object the kernel allocates, dynamically, a
block of memory for the object and returns an identifying value for it. This
value 1is useful for program references to an object as well as in the deletion
of an object.

The VAXELN kernel objects are:

O AREA

o0 DEVICE
o EVENT
O MESSAGE
O NAME

o PORT

o PROCESS

o SEMAPHORE

3-1



KERNEL OBJECTS AND THEIR USE

3.1.1 AREA Object

[INTRO:3-2, RF:2-4, Program COMM_5.PAS]

represents a region of physical memory

the region may be shared among jobs on a single node

contains a binary semaphore to synchronize access

may have a size of 0 representing just the binary semaphore
has a name of up to 31 characters

has state SIGNALED or FREE

has list of processes waiting for access to the region

has region attached to it

the object itself occupies one block of kernel pool (128 bytes)
the region is mapped into process PO space

region is allocated from physically contiguous 512-byte pages of memory

VAXELN AREAs are similar to the VMS shared regions and global sections

3.1.1.1

Operations on AREA objects

The following predeclared routines may be used to manipulate AREA objects:

CREATE_AREA - creates, or maps existing area; returns ID of area and a
pointer to region of memory

WAIT ALL, WAIT_ANY - for gaining exclusive access to an area process
waits for the 51gna111ng of an area by passing the area value to one of
these procedures

SIGNAL - an area is signalled by passing its value to this predeclared
procedure

DELETE - an area is deleted from an application by passing its wvalue to
this procedure

3-2



3.1.1.2

KERNEL OBJECTS AND THEIR USE

Call format for CREATE_AREA

The call format for CREATE AREA is:

CREATE_AREA ( area,
data_pointer,
area_name,
VIRTUAL := base_va,
STATUS := stat

3.1.2 DEVICE Object

[INTRO:3-3, RF:2-11]

3.1.2.1

enables interrupt service routine (ISR) to signal interrupt to process
ISR called by kernel when interrupt occurs

signaliing a device object enables synchronization with processes in
job

device object has set of device characteristics established with system
builder

has a communication region
ISR is passed DEVICE value and communication region on interrupt
DEVICE object occupies one block of kernel pool (128 bytes)

connected ISR requires one block of kernel pool for its dispatcher

Operations on DEVICE objects

The following predeclared routines may be used to manipulate DEVICE objects:

CREATE_DEVICE - creates a DEVICE object and returns its ID

WAIT ALL, WAIT _ANY - processes wait for the signalling of a DEVICE
object from an Interrupt Service Routine (ISR) by passing the DEVICE
value to one of these procedures



KERNEL OBJECTS AND THEIR USE
- SIGNAL DEVICE - a DEVICE is signalled from an (ISR) by passing its
value to this predeclared procedure

- DELETE - a DEVICE is deleted from an application by passing its wvalue
to this procedure

3.1.2.2 Call format for CREATE_DEVICE
The call format for CREATE_DEVICE is:

CREATE_DEVICE ( device_name,
device,
VECTOR_NUMBER
SERVICE_ROUTINE

relative_vector,
routine_name,

REGION := region_pointer,
REGISTERS := register_pointer,
ADAPTER_REGISTERS := adapter_pointer,
VECTOR := vector_pointer,
PRIORITY := interrupt_priority,

POWERFAIL_ROUTINE
STATUS := stat

power_routine,

3-4



KERNEL OBJECTS AND THEIR USE

3.1.3 EVENT Object

[INTRO:3-2, RF:2-5, Program SYNCH 2.PAS and others]

- records occurrences of events until cleared

- state SIGNALED or CLEAR

- has list of processes waiting for event to be signaled

- EVENT objects occupy one block of kernel pool (128 bytes)

VAXELN EVENT objects are very similar to the event flags of VMS

3.1.3.1 Operations On EVENT Objects -
The following predeclared routines may be used to manipulate EVENT objects:
- CREATE_EVENT - creates an EVENT object and returns its ID

- WAIT_ALL, WAIT_ANY - processes wait for the signalling of an EVENT
object by passing the EVENT value to one of these procedures

- SIGNAL - an EVENT is signalled by passing its value to this predeclared
procedure

- CLEAR EVENT - an event is cleared by passing its value to this
procedure

- DELETE - an event is deleted from an application by passing its wvalue
to this procedure

3.1.3.2 Call format for CREATE_EVENT
The call format for CREATE EVENT is:
CREATE_EVENT ( event,

initial_state,
STATUS := stat

3-5



KERNEL OBJECTS AND THEIR USE

3.1.4 MESSAGE Object

[INTRO:3-2, RF:2-7, Program COMM_l.PAS and others]

3.1.4.1

used when sending data from a job to a PORT
PORT usually in another job

MESSAGE contains data and its length

data are mapped in process PO space

creation returns identifier and pointer to data

MESSAGE sent by providing MESSAGE and PORT values to SEND procedure
which removes message from sender's PO space

MESSAGE removed from PORT and mapped into PO space by providing PORT
value to RECEIVE procedure

RECEIVE returns identifier and pointer to message data
MESSAGE object occupies one block of kernel pool (128 bytes)

message data are allocated from physically contiguous 512-byte pages of
memory, page aligned

Operations On MESSAGE Objects -

In addition to the SEND and RECEIVE procedures noted above the following
predeclared routines may be used to manipulate MESSAGE objects:

3.1.4.2

CREATE_MESSAGE - creates a MESSAGE object returns its ID and maps its
data into the job's PO address space

DELETE - a MESSAGE is deleted from an application by passing its wvalue
to this procedure

Call format for CREATE_MESSAGE

The call format for CREATE_MESSAGE is:

CREATE_MESSAGE ( message,
data_pointer,
STATUS := stat );

3-6



KERNEL OBJECTS AND THEIR USE

3.1.5 NAME Object

[INTRO:3-3, RF:2-10, Program COMM_3.PAS and others]

3.1.5.1

entry in a name table
associates a character string with a message port
there are two types of name:
(a) local names - within a node
(b) universal names - at all nodes
universal name requires 64 bytes of kernel pool 1in 1local network
service and 64 bytes in network service of network's current name
server.
name may be up to 31 characters
has the PORT value identifying the object

NAME object occupies one block of kernel pool (128 bytes)

Operations On NAME Objects -

The following predeclared routines may be used to manipulate NAME objects:

3.1.5.2

CREATE_NAME - creates a NAME and returns its value

TRANSLATE_NAME - provides an associated PORT value from the name string
supplied to this procedure

DELETE - a NAME is deleted from an application by passing its value to
this procedure

Call format for CREATE NAME

The call format for CREATE_NAME is:

CREATE_NAME ( name,
name_string,
port_value,



KERNEL OBJECTS AND THEIR USE

TABLE :
STATUS :

3.1.6 PORT Object

[INTRO:3-3, RF:2-8, Program COMM_7.PAS and others]

3.1.6.1

destination for messages

each port belongs to a job

they are accessible from any job in local area network (LAN)
identifying value is valid in all jobs in all nodes in network

each executing job in the system has a job port

ports have maximum number of queued messages

they have a list of queued messages - removed by RECEIVE procedure

have state of CONNECTED or UNCONNECTED

if it is connected, the PORT value of the PORT to which it is connected
PORT value is 128 bits long [RF:2-9]

PORT object occupies one block of kernel pool (128 bytes)

Operations On PORT Objects -

The following predeclared routines may be used to manipulate PORT objects:

CREATE_PORT - creates a PORT object and returns its ID

JOB_PORT - this procedure enables each job to obtain its unique port
value

ACCEPT_CIRCUIT - provides a wait mechanism for a process. A process
can wait for a circuit connection request using this procedure

CONNECT_CIRCUIT - connects a port in a circuit

3-8



3.1.6.2

The call

3.1.7 P

[INTRO:3

3.1.7.1

KERNEL OBJECTS AND THEIR USE

DISCONNECT_CIRCUIT - disconnects a port from a circuit

WAIT _ALL, WAIT ANY - processes wait for the receipt of a message by
passing the PORT value to one of these procedures

DELETE - a PORT is deleted from an application by passing its value to
this procedure

Call format for CREATE_PORT
format for CREATE_PORT is:
CREATE PORT ( port,

LIMIT

STATUS
)i

ROCESS Object

-2, RF:2-3, Program COMM_1.PAS and others]

represents current execution context in a program in a job
job is defined as for VMS i.e. a set of cooperating processes
has one of 16 levels of process priority

has state of: running, ready, waiting or suspended

has username and user identification code (UIC)

Operations On PROCESS Objects -

The following predeclared routines may be used to manipulate PROCESS objects:

CREATE_PROCESS - creates a PROCESS and returns its ID

CURRENT_PROCESS - this procedure enables a process to obtain its own
value



KERNEL OBJECTS AND THEIR USE

SUSPEND - allows suspension of a process's execution

RESUME - allows resumption of a suspended process

SET_PROCESS_PRIORITY - allows alteration of a process's priority
WAIT_ALL, WAIT_ANY - a process waits for another to finish by passing
the process value to one of these procedures

SIGNAL - a process is forced into an exception condition by passing the
process value to this procedure

EXIT - allows a forced immediate exit from a process

DELETE - a process is deleted from an application by passing its
to this procedure

value

3.1.7.2 Call format for CREATE_ PROCESS

The call format for CREATE_PROCESS is:

CREATE_PROCESS ( process,
subprocess_name,
argument list,

EXIT exit_status,
STATUS stat
)i

3.1.8 SEMAPHORE Object

[INTRO:3-2, RF:2-6]

controls and protects resource from simultaneous accessors

maintains count of number of processes that may be allowed to obtain
semaphore

maximum value for count - maximum number of processes
semaphore simultaneously

that may have
list of processes awaiting signalling of semaphore

SEMAPHORE object occupies one block of kernel pool (128 bytes)

3-10



3.1.8.1

KERNEL OBJECTS AND THEIR USE

Operations On SEMAPHORE Objects -

The following predeclared routines may be used to manipulate SEMAPHORE objects:

3.1.8.2

CREATE_SEMAPHORE - creates a SEMAPHORE and returns its ID

WAIT_ALL, WAIT ANY - a process waits for the signalling of a semaphore
by passing the process value to one of these procedures. The semaphore
count is decremented on satisfaction of the wait.

SIGNAL - a semaphore is signalled by passing its wvalue to this
procedure

DELETE - a semaphore is deleted from an application by passing its
value to this procedure

Call format for CREATE_ SEMAPHORE

The call format for CREATE_SEMAPHORE is:

CREATE_SEMAPHORE ( semaphore,
initial_count,
maximum_count,
STATUS := stat

3-11






CHAPTER 4

PROGRAM DEVELOPMENT

4.1 COMPILING VAXELN SOURCES

[HS:2-1, LRM:16-1]

The compilation command is the same as for all VMS native mode high 1level
languages:

§ EPASCAL qualifier-list file-specification-list

The default file type is .PAS and the result of the compilation is one object
file (type .OBJ). The default qualifiers in effect render the EPASCAL command:

$ EPASCAL /NOCHECK /NOCROSS_REFERENCE /DEBUG=TRACEBACK -

_$ /EXPORT /NOG_FLOATING /INLINE /NOLIST /NOMACHINE CODE -
_$ /NOMAP /OBJECT /OPTIMIZE /SHOW=(SOURCE,HEADER) -

_$ /VALIDATE=REQUIRED /WARNINGS

Chapter 16 of the VAXELN Pascal Language Reference Manual (Part 2) is definitive
on qualifiers. If a particular set of qualifiers is required routinely then the
EPASCAL command might be redefined in a LOGIN.COM file. For example:

$ ! Redefinition of EPASCAL for normal use

$ EP*ASCAL == "EPASCAL /LIST /CROSS_REFERENCE /CHECK=ALL"

$ ]

$ ! Redefinition of EPASCAL for using DEBUG

$ EPD == "EPASCAL /DEBUG /LIST /CROSS_REFERENCE /CHECK=ALL"

4-1



PROGRAM DEVELOPMENT

The full list of qualifiers to EPASCAL is:

Qualifier
CHECK=(1ist)
list: ALL

ASSERT, NOASSERT,
RANGE, NORANGE

CROSS_REFERENCE

DEBUG=(1list)
lists: ALL

EXPORT_ONLY

IMPORT_TOO
NONE
SYMBOLS
TRACEBACK

EXPORT

G_FLOATING

INCLUDE=(module-list)

INLINE

LIBRARY

LIST=file-specification

MACHINE_CODE

MAP=option
option: LOCAL

REFERENCED

ALL

MODULE

OBJECT=file-specification

Negative form
NOCHECK

NOCROSS_REFERENCE

NODEBUG

NOEXPORT

NOG_FLOATING

NOINLINE

NOLIST

NOMACHINE CODE

NOMAP

NOOBJECT

Default
NOCHECK

NOCROSS_REFERENCE

DEBUG=TRACEBACK

EXPORT
NOG_FLOATING

INLINE

NOLIST
NOMACHINE_CODE

NOMAP

OBJECT=source-name.OBJ



Qualifier

OPTIMIZE=(option-list)
option-list:

COMMON_SUBEXPRESSIONS,
NOCOMMON_SUBEXPRESSIONS

DISJOINT,
NODISJOINT
INVARIANT,
NOINVARIANT

LOCALS_IN_REGISTERS,
NOLOCALS_IN_REGISTERS

PEEPHOLE,
NOPEEPHOLE

RESULT_INCORPORATION,
NORESULT INCORPORATION

SHOW=(option-list)
option-list:

HEADER,
NOHEADER
INCLUDE,
NOINCLUDE
MODULES,
NOMODULES
SOURCE,
NOSOURCE
STATISTICS,
NOSTATISTICS

VALIDATE=option
option:
NONE
REQUIRED
ALL

WARNINGS

Negative form

NOOPTIMIZE

NOWARNINGS

PROGRAM DEVELOPMENT

Default

OPTIMIZE=
(COMMON_SUBEXPRESSIONS,
DISJOINT,
INVARIANT,
LOCALS_IN_REGISTERS,
PEEPHOLE,
RESULT_INCORPORATION)

SHOW=( SOURCE, HEADER)

VALIDATE=REQUIRED

WARNINGS



PROGRAM DEVELOPMENT

4.2 USING THE DCL COMMAND LINK

[HS:2-8]
The link command is the same as for all VMS native mode high- level languages:

$ LINK qualifier-list file-specification-list

4.2.1 VAXELN Object Libraries

The link command requires the presence of two libraries for most linker

operations involving VAXELN Pascal images. These libraries are:
0 ELNS :RTLSHARE.OLB
o ELNS:RTL.OLB
It may be convenient to take advantage of the VMS LNK$ logical names thus:

$ ASSIGN ELNS :RTLSHARE.OLB LNKSLIBRARY
$ ASSIGN ELNS$:RTL.OLB LNKSLIBRARY 1

If these assignments are placed in a LOGIN.COM file or established during
VAXELN work session DCL command LINK may be reduced from:

$ LINK files-to-be-linked ,ELNS:RTLSHARE/LIBRARY -
$ ,ELNS :RTL/LIBRARY

$ LINK files-to-be-linked
LINK command qualifiers that may be useful are:

/DEBUG - use when compiled with /DEBUG

/LIBRARY - means file is a library

/INCLUDE=(module-1list) - implies that qualified file is a library
/SHAREABLE - for creating shareable images

/NOSYSSHR - recommended but should not be necessary

a



CHAPTER 5

SYSTEM DEVELOPMENT

5.1 THE EBUILD COMMAND

[UG:3-1]

The EBUILD command allows the user to build a VAXELN system from prepared
images. These images may be user-written or supplied by DEC with your VAXELN
toolkit.

$ EBUILD qualifier-list data-file-specification

The default output file type is .SYS and this contains the VAXELN system. The
default qualifiers in effect render the EBUILD command:

$ EBUILD /EDIT /KERNEL=ELNS:KERNEL.EXE /LOG /NOMAP -
_$ /SYSTEM=datafile-name.SYS

Chapter 13 of the VAXELN User's Guide is definitive on qualifiers. If a
particular set of qualifiers is required routinely then the EBUILD command might
be redefined in a LOGIN.COM file. For example:

$ ! Redefinition of EBUILD
$ EB*UILD == "EBUILD /MAP /FULL"
$ !



SYSTEM DEVELOPMENT

The full list of EBUILD qualifiers is:

Qualifier Negative form Default

BRIEF NOBRIEF BRIEF

(works with /MAP)

EDIT NOEDIT EDIT

FULL NOFULL NOFULL

KERNEL - KERNEL=ELNS$ :KERNEL .EXE
LOG NOLOG LOG
MAP=file-specification NOMAP NOMAP
SYSTEM=file-specification - SYSTEM=datafile-name.SYS

The results of your dialogue with the System Builder are recorded in a .DAT
file. This file contains printable text of additions or changes made in an
/EDIT session. You may create a new system from an existing .DAT file by simply
issuing the EBUILD command thus:

$ EBUILD /NOEDIT file-name.DAT



SYSTEM DEVELOPMENT

The System Builder comprises a number of menus as described in detail in [HS:3-4

to 3-31].

5.1.1 Program Descriptions Menu

Entry

Debug

Run
Init required

Mode

User stack (initial)
Kernel stack

Job priority
Process priority

Job port message limit
Powerfailure exception

Argument (s)

5.1.2 Device Descriptions Menu

Entry

Name

Register address

Vector address

Interrupt priority

Autoload driver

The menus and the entries and defaults are listed below

Responses Default(s)
Yes, No No

Yes, No Yes
Yes, No No
User, Kernel User

1 - 32,767 pages 1 page
1 - 32,767 pages 1 page
0 - 31 16

0 - 15 8
0-16,384 16,384
Yes, No No

In" " None
Responses Default(s)
Device controller name -
Physical 18-bit -
address (see table

[HS:3-20] )

Address of device's -
first interrupt vector

(see table [HS:3-20])

4 - 7 5
Yes, No Yes



SYSTEM DEVELOPMENT

Entry
System image

Debug

Console

Instruction emulation

Boot method

Disk/volume names
Guaranteed image list

Page table slots

Ports

Pool size

Virtual size
Interrupt.stack

I/0 region size
Dynamic program space

Time interval

Connect time

Memory limit

5.1.3 System Characteristics Menu

Responses

None

Local, Remote,
Both, None

Yes, No

String, Float,
Both, None

Disk, ROM, Down-line

Device and volume
info

Shareable images,
separated by ',

2 - 32,767

(2 per job

1 per subprocess)
2 - 32,767

16 - 32,764 blocks
128 - 32,640 pages
2 - 8,192 pages

0 - 32,767 pages
0 - 32,767 pages

1 - 120,000,000
microseconds (2 min)

1 - 3,599 seconds

0 - 65,535 pages

5-4

Default(s)

Remote

Yes

String

Down-line

64

256
384

1,024

128
0

10,000 microseconds
(fixed on MicroVax)

45 seconds

0 (use all available)



Entry

Network Service
Name server

File Access Listener
Network device

Node name

Node address

Authorization required
Authorization service
Authorization file
Default UIC

Node triggerable

Network segment size

5.1.4 Network Node Characteristics Menu

Responses

Yes, No

Yes, No

Yes, No

UNA, QNA, Other
1 - 6 chars
(not needed for

down-line load)

Not needed for
down-line load

Yes, No

Local, Network, None
File-spec

Valid UIC

Yes, No

192 - 1,470 bytes

SYSTEM DEVELOPMENT

Default(s)
Yes
Yes
Yes

QNA

No

None
AUTHORIZE.DAT
[1,1]

Yes

576 bytes



SYSTEM DEVELOPMENT

5.1.5 Terminal Descriptions Menu

Entry

Terminal

Terminal type

Speed

Parity

Parity type
Display type
Escape recognition
Echo

Pass all

Eight-bit

Modem

DDCMP

Responses

Only if terminal
required

Controller -
DMF, DZ, DH

Range from
50 - 9600 baud

Yes, No

0dd, Even
Scope, Hardcopy
Yes, No

Yes, No

Yes, No

Yes, No

Yes, No

Yes, No

5.1.6 Console Characteristics Menu

Entry
Display type

Escape recognition

Echo
Pass all
Eight-bit

Responses

Scope, Hardcopy
Yes, No
Yes, No
Yes, No

Yes, No

Default(s)

Dz

9600

No
Even
Scope
Yes
Yes
No
No
No

No

Default(s)
Hardcopy
Yes

Yes

No

No



Example of brief and full maps for a simple program:

MODULE Simple [IDENT ('V1.000')];
PROGRAM Simple (OUTPUT);
BEGIN
WRITELN ( 'A simple program to test VAXELN' );
END { of PROGRAM }.

END { of MODULE };

characteristic /noconsole
program SIMPLE /debug

$ EBUILD /NOEDIT /MAP /BRIEF SIMPLE

5-7

PROGRAM —-—-—========m——mmmmme

--- EBUILD .DAT FILE -—----——--—---

SYSTEM DEVELOPMENT



SYSTEM DEVELOPMENT

VAXELN System Builder
ELN v2.3-00

System file

SIMPLE

Kernel

XQDRIVER
EDEBUGREM
SIMPLE

Devices

Shareable

images

NETWORK
PASCALMSC
DAP
PRGLOADER
DPASCALIO
ELNACCESS
VAXEMUL

- MAP FILE

27-MAY-1987 12:30:02.15
27-MAY-1987 12:30:02.15

DISKSINSTRUCT: [SHONE .VAXELN]SIMPLE.SYS;1

SYS$SYSDEVICE: [ELN JKERNEL.EXE;3

SYS$SYSDEVICE: [ELN]XQDRIVER.EXE; 3
SYS$SYSDEVICE: [ELN]EDEBUGREM.EXE; 3
DISK$INSTRUCT : [SHONE.VAXELN]SIMPLE.EXE; 1

SYS$SYSDEVICE: [ELN]NETWORK.EXE; 3
SYS$SYSDEVICE: [ELN]PASCALMSC.EXE; 3
SYS$SYSDEVICE: [ELN]DAP.EXE;3
SYS$SYSDEVICE: [ELN]PRGLOADER.EXE; 3
SYS$SYSDEVICE: [ELN]DPASCALIO.EXE;3
SYS$SYSDEVICE: [ELN]ELNACCESS.EXE;2
SYS$SYSDEVICE: [ELN]VAXEMUL .EXE; 3

Network node characteristics

Network service
Name server

File access listener
Network device

Node name

Node address

Authorization required

Authorization service
Authorization file
Default system UIC
Node triggerable
Network segment size

Yes
No
No
QNA

0

No

None
AUTHORIZE.DAT
[1,1]

Yes

576 bytes

5-8



System characteristics

Debugger

Console driver
Instruction emulation
Boot method
Volume/device names
Guaranteed image list
Page table slots
Ports

Pool size

Virtual size
Interrupt stack

I/0 region size
Dynamic program space
Time interval

Connect time

Memory limit

Remote

No

String
Downline-load

64

256

384 blocks

1024 pages

2 pages

128 pages

0 pages

10000 microseconds
45 seconds

0 pages

System image size is 280 pages (140K bytes)

/NOEDIT/MAP/BRIEF SIMPLE

SYSTEM DEVELOPMENT



SYSTEM DEVELOPMENT

-—- -- EBUILD COMMAND

$ EBUILD /NOEDIT /MAP /FULL SIMPLE

———————————————————————————— MAP FILE - -—
VAXELN System Builder 27-MAY-1987 12:30:19.34
ELN V2.3-00 27-MAY-1987 12:30:19.34
System file
SIMPLE DISK$ INSTRUCT : [SHONE . VAXELN]SIMPLE.SYS;2
Kernel
KERNEL SYS$SYSDEVICE: [ELN]KERNEL.EXE; 3
(VAXELN kernel)
Vectors and Data: Start: 80000000 Pages: 4
Parameters: Start: 80000800 Bytes: 101
R/0 Data and Code: Start: 80000868 Pages: 46
Transfer address: 00000000

Programs

XQDRIVER SYS$SYSDEVICE: [ELN]XQDRIVER.EXE;3

(Network device driver)

No debug, Run, Initialize, Mode = Kernel
User stack = 1, Kernel stack = 8

Job priority = 1, Process priority = 8
Job message limit = 16384

Power recovery exception = Disabled
Argument(s):

1) "XOoA"
Image section(s):

Type Base VA Page(s) Image
Demand zero 00000200 2
Read-only 00000600 15

Fixup vector 00002400 1
Shareable 00002600 50 NETWORK
Fixup vector 00008A00 1

Transfer address: 00000644

5-10



SYSTEM DEVELOPMENT

EDEBUGREM SYS$SYSDEVICE: [ELN]EDEBUGREM.EXE; 3

(Remote debugger)

No debug, Run, Initialize, Mode = Kernel
User stack = 1, Kernel stack = 2

Job priority = 3, Process priority = 8
Job message limit = 16384

Power recovery exception = Disabled
Argument(s):

Image section(s):

Type Base VA Page(s) Image
Demand zero 00000200 1
Read-only 00000400 21
Fixup vector 00002EQ0 1

Transfer address: 000019DD
SIMPLE DISKS$INSTRUCT : [SHONE.VAXELN]SIMPLE.EXE; 1l

Debug, Run, No initialize, Mode = User
User stack = 1, Kernel stack = 4

Job priority = 16, Process priority = 8
Job message limit = 16384

Power recovery exception = Disabled
Argument(s):

Image section(s):

Type Base VA Page(s) Image
Noshr Write 00000200 1
Read-only 00000400 1
Fixup vector 00000600 1

Transfer address: O0000041F

Devices
XQA CSR address = %0774440
Vector = %0120
Priority = 4
BI number = 0
Adapter number = 0
Terminals

Shareable images

NETWORK SYS$SYSDEVICE: [ELN]NETWORK.EXE; 3
Major Id: 1, Minor Id: O
Map into program region = Yes
Image section(s):
Type Base VA Page(s)
Read-only 8000C000 48

5-11



SYSTEM DEVELOPMENT

PASCALMSC

DAP

PRGLOADER

DPASCALIO

ELNACCESS

VAXEMUL

Noshr Write 80012000 2
Fixup vector 80012400 1

SYS$SYSDEVICE: [ELN]PASCALMSC.EXE; 3
Major Id: 1, Minor Id: 3
Map into program region = No
Image section(s):
Type Base VA Page(s)
Read-only 80012800 9

SYS$SSYSDEVICE: [ELN]DAP.EXE; 3
Major Id: 1, Minor Id: 1
Map into program region = No
Image section(s):

Type Base VA Page(s)
Read-only 80013A00 51
Fixup vector 8001A000 1

SYS$SYSDEVICE: [ELN]PRGLOADER.EXE;3
Major Id: 1, Minor Id: O

Map into program region = No

Image section(s):

Type Base VA Page(s)
Read-only 8001A200 8
Fixup vector 8001B200 1

SYSS$SYSDEVICE: [ELN]DPASCALIO.EXE;3
Major Id: 1, Minor Id: 1

Map into program region = No

Image section(s):

Type Base VA Page(s)
Read-only 8001B400 38
Fixup vector 80020000 1

SYS$SYSDEVICE: [ELN]ELNACCESS .EXE; 2
Major Id: 1, Minor Id: O

Map into program region = No

Image section(s):

Type Base VA Page(s)
Read-only 80020200 4
Fixup vector 80020A00 1

SYS$SYSDEVICE: [ELN]VAXEMUL .EXE; 3
Major Id: 1, Minor Id: O
Map into program region = No
Image section(s):
Type Base VA Page(s)
Read-only 80020C00 18

5-12



Network node characteristics

Network service Yes
Name server No
File access listener No
Network device QNA
Node name

Node address 0

Authorization required No
Authorization service None

Authorization file AUTHORIZE.DAT
Default system UIC {1,1]
Node triggerable Yes

Network segment size 576 bytes

System characteristics

Debugger Remote
Console driver No
Instruction emulation String

Boot method Downline-load

Volume/device names
Guaranteed image list

Page table slots 64

Ports 256

Pool size 384 blocks

Virtual size 1024 pages
Interrupt stack 2 pages

I/0 region size 128 pages

Dynamic program space 0 pages

Time interval 10000 microseconds
Connect time 45 seconds

Memory limit 0 pages

System image size is 280 pages (140K bytes)

/NOEDIT/MAP/FULL SIMPLE

5-13

SYSTEM DEVELOPMENT






CHAPTER 6

BOOTING AND DOWNLINE LOADING

Once you have created a VAXELN system with the System Builder, the next stage in
the development cycle is loading the system onto a target VAX. Two methods are

available:

- from magnetic medium - disk or tape

- downline using an Ethernet
Part of the installation of VAXELN produces a system for testing purposes. It
is called ICP.SYS and resides in the directory ELN$S. You might like to boot

this system to ensure the installation was correct and also to practice the
system loading sequences, before going live with your own.

6.1 BOOTING FROM DISK

[HS:4-1]

Booting your VAXELN system from disk assumes that the target machine 1is easily
reached. The bootable image is transported on the chosen medium to the target.
If the target is some distance removed from the host VAX a downline loading

method might be more appropriate. See the section on downline loading for
details of this method.

6.1.1 Making Bootable Media

The command procedure ELN$:COPYSYS.COM allows you to create a bootable copy of
your system (or the supplied ICP.SYS) on a:

- PFiles-11l disk or

- TUS58 cartridge

6-1



BOOTING AND DOWNLINE LOADING

WARNING
Before attempting to make a bootable disk please ensure that you
build your system with the Boot Method response as DISK in the
System Characteristics menu. Failure to observe this setting
will cause premature exit from ELNS :COPYSYS.COM.
If you wish to make a bootable floppy disk, Application 9 in the Application
Design Guide (ADG) page 9-1 1lists the Pascal source for performing that

function. The source for this and the other applications is supplied with your
system. The details of using COPYSYS.COM and the console boot commands are at

[HS:4-1].

6.2 DOWNLINE LOADING

Before downline 1loading may proceed both host and target VAXes must be
configured correctly. It is assumed that communications hardware is installed
on the host and target machines and that DECnet-VAX software is present on the

former. If this is not the case, consult your system manager. Some familiarity
with the Network Control Program (NCP) is desirable.

6.2.1 Validating The Host Node Database
Before a downline load request can be serviced the host node network data base
must be updated. To see if the host node knows of the remote target, issue the
following commands:

$ RUN SYSSSYSTEM:NCP ( or $ MC NCP)
at the NCP> prompt issue:

NCP> SHOW NODE node-name CHARACTERISTICS

e.qg. NCP> SHOW NODE GRUMPY CHARACTERISTICS

Node Volatile Characteristics as of 27-MAY-1987 13:21:25
$NCP-I-NMLRSP, listener response - Unrecognized component, Node

You or your system manager must supply the following details of the target
machine to the network data base:

o node address

O node name



BOOTING AND DOWNLINE LOADING

o Ethernet hardware address

o host VAX load device name

6.2.2 Node Address

This comprises an area code in the range 1-63 and a node number in the range

1-1023.

6.2.3 Node Name

This comprises 1-6 alphanumeric characters including at 1least one alphabetic

character

6.2.4 Ethernet Hardware Address

This is printed on the controller board. For a MicroVAX proceed as follows:

press the HALT button TWICE on the front panel of the MicroVaX. This
produces the >>> prompt on the console

examine the first DEQNA device register by typing: >>> E/P/W 20001920
continue by issuing this command five times: >>>E +

the six strings returned provide you with the details of the Ethernet
hardware address. The output on the console might look something like
this:

>>> E/P/W 20001920

P 20001920 FFAA
>>> E +

P 20001922 FFO02
>>> E +

P 20001924 FF1l2
>>> E +

P 20001926 FF04
>>> E +

P 20001928 FF1B
>>> E +

P 2000192A FF88

The last two characters on each string returned constitute the hardware address
that you are seeking. From the example above the hardware address would be:
AA-02-12-04-1B-88.

6-3



BOOTING AND DOWNLINE LOADING

6.2.5 Host VAX Load Device

Your host VAX load device will be a DEUNA and the service circuit UNA-0. For a
MicroVAX host the load device would be a DEQNA and the service circuit QNA-O.

6.3 CONFIGURING THE HOST NETWORK DATA BASE

The DEFINE and SET commands recognized by NCP require SYSPRV and OPER privilege
respectively. A system User Identification Code (UIC) will also permit use of
the NCP command DEFINE. Your system manager is unlikely to allow you these
levels of privilege unless you are an operator or you perform a system manager
function. To configure your VMS host for downline loading you must 4issue the
following commands:

$ RUN SYSSSYSTEM:NCP

NCP> DEFINE LINE UNA-O SERVICE ENABLED

NCP> DEFINE CIRCUIT UNA-O SERVICE ENABLED

NCP> SET LINE UNA-O STATE OFF

NCP> SET LINE UNA-0 ALL

NCP> SET CIRCUIT UNA-O STATE OFF

NCP> SET CIRCUIT UNA-O ALL

NCP> DEFINE NODE EXAMPL ADDRESS 4.22 SERVICE CIRCUIT UNA-O
NCP> DEFINE NODE EXAMPL HARDWARE ADDRESS AA-01-02-03-00-F2
NCP> SET NODE EXAMPL ALL

Circuits and Lines - MicroVAaX

Where the host is a MicroVAX use QNA-0 in place of UNA-0 in the
commands listed above

There are two data bases available for the network. They are the permanent and
volatile data bases. The command "NCP> SET NODE EXAMPL ALL" above copies the
permanent data base to the volatile data base. The latter will disappear when
the host VAX is turned off but is restored from the permanent data base when the
host is bootstrapped. The NCP command DEFINE adds data to the permanent data
base while the SET command makes changes only to the volatile data base

6.4 CONFIGURING BOOTSTRAP LOADERS

The VAX-11/730 and 11/750 processors use the TU58 console storage medium for
storing downline 1load bootstrap loaders. On MicroVAX processors these loaders
are contained in the boot Read-Only Memory (ROM). VAXELN provides a command
procedure - ELNS$:NEWBOOT.COM - to copy the bootstrap image file onto a TU58
console tape and, on 11-730 processors, a bootstrap command procedure.
NEWBOOT.COM prompts for information before performing its tasks. Because
NEWBOOT.COM writes to the console storage device - and hence requires the
presence of the storage device's driver - the privilege CMKRNL is required. DEC
recommends that NEWBOOT.COM is executed from the system manager account.

6-4



BOOTING AND DOWNLINE LOADING

MicroVAX II language prompt

Where the host is a MicroVAX II part of the power-up sequence
may include a request for the language to be used. To disable
this request, switch to no language inquiry by turning the knob
on the KA-630 panel above the baud rate setting knob to its top
position - an arrow.

6.5 DOWNLINE LOADING
Before downline loading can proceed please fulfil the following:

1. the target machine must be running

2. the host network data base must be informed of the system to be loaded
Use the following command to perform this operation:

NCP> SET NODE EXAMPL LOAD FILE -
_DISKSDEVELOP: [VAXELN.SYSTEMS ] SIMULATOR . SYS

Note that .SYS is the default file type for a load file specification. You may
wish to perform the same operation using EDEBUG thus:

$ EDEBUG /LOAD=DISK$DEVELOP:[VAXELN.SYSTEMS]SIMULATOR EXAMPL
Using EDEBUG requires OPER privilege as it performs an NCP SET operation
Boot method
Ensure that you specify Downline in the System Builder menu Edit
System Characteristics, for the entry Boot Method, before

building your system. Downline is the default.

The downline load bootstrap loader can be started using the console boot command
"B" from the target machine. The commands for 730's, 750's and MicroVAX are:

o 11/730 - >>> B XEO (DEUNA loader)
o 11/750 - >>> B DDAO (Console storage)
O MicroVAX - >>> B XQAO (DEQNA loader)

At this point the host system receives a load request and the network software
there creates a process called Maintenance Operation Monitor (MOM) to read the
system image file specified in its network data base and sends it to the remote
target's bootstrap loader. When using the downline load method for booting a
VAXELN system you don't need to specify either the node name or node address in
the System Builder menu Network Node Characteristics. These data are provided
as part of the loading procedure. This has the advantage that the same system

6-5



BOOTING AND DOWNLINE LOADING

image may be loaded on several processors regardless of their name or address.

6.6 RELOADING TARGETS THAT HAVE NETWORK SERVICE

Provided your VAXELN system has the Network Service - by default it will have
(see System Builder section) - you should not have to go to the target VAX to
reboot it. To enable remote "triggering" set the default bootstrap loader to
downline load by setting the default bootstrap selection switches to the correct
read-only loader. For the three machines mentioned above the procedure is:

0 11/730 - setting is performed by the NEWBOOT procedure
o0 11/750 - set default boot device switch to "A"

0 MicrovaX - set CPU configuration DIP switch 1 to "on" - this is the
default.

The NCP command TRIGGER NODE node-name issues a boot request to the target and
the VAXELN datalink device driver halts execution of VAXELN and initiates
execution of the default bootstrap.

6.7 MONITORING NETWORK EVENTS

If you encounter problems on your network when loading systems downline the
network event-logging facilities on the host will be useful in diagnosing
problems. Your system manager/operator will help and may already have issued
these commands:

NCP> SET LOGGING MONITOR KNOWN EVENTS
NCP> SET LOGGING MONITOR STATE ON

Messages are written to the host system's console terminal. A wuser with OPER
privilege may issue the DCL command:

$ REPLY /ENABLE=NETWORK

from any terminal and that will enable display of network event messages at that
terminal. Messages like these will appear when downline loading occurs:



BOOTING AND DOWNLINE LOADING

$535%%5%%%%% OPCOM 29-MAY-1986 09:20:26.14 $%5%%3%3%%%%
Message from user DECNET on S8VMS

DECnet event 0.3, automatic line service

From node 1.255 (S8VMS), 29-MAY-1986 09:20:25.93

Circuit UNA-0, Load, Requested, Node = 1.19 (ELNVAX)
File = SYS$SYSROOT:[SYSMGR]SIMPLE.SYS, Operating system
Ethernet address = AA-00-03-01-34-59

$5%5%%%%5%3%%% OPCOM 29-MAY-1986 09:20:34.70 %%%%%%%3%%%%
Message from user DECNET on S8VMS

DECnet event 0.3, automatic line service

From node 1.255 (S8VMS), 29-MAY-1986 09:20:34.65

Circuit UNA-0, Load, Successful, Node = 1.19 (ELNVAX)
File = SYSSSYSROOT:[SYSMGR]SIMPLE.SYS, Operating system
Ethernet address = AA-00-03-01-34-59

6.8 PROBLEMS WITH DOWNLINE LOADING

With a multi-node VAX environment it is possible to have two or more host VAX
processors capable of responding to a target system's boot request. Ensure that
only one host VAX can respond to a target system's boot request. If device
timeout messages are being logged by DECnet-VAX it is well worth checking that
only one node's data base contains load information for a specific target. If
you are in doubt have the following commands executed:

on old node:

NCP> CLEAR NODE EXAMPL SERVICE CIRCUIT HARDWARE ADDRESS

on new node:

NCP> SET NODE EXAMPL SERVICE CIRCUIT UNA-0 -
_HARDWARE ADDRESS AA-01-02-03-00-F2

6-17



BOOTING AND DOWNLINE LOADING

6.9 PROBLEM BOOTING FROM DEQNA

If a console message like this should appear:
>>> B XQAO
..2

CTRLERR XQAO

Failure.
>>>

don't suspect the DEQNA immediately. Check the Ethernet transceiver connection
is sound and that the connector to the MicroVAX into the DEQNA socket is firm.



CHAPTER 7

DEBUGGING

7.1 METHODS OF DEBUGGING
There are two methods for debugging a VAXELN system:
1. remotely

2. locally

7.1.1 Debugging Remotely
If you choose remote debugging the System Builder includes remote debugger
software in the system. This allows you to debug your system from your host VAX

via the Ethernet connecting host and target using the DCL command EDEBUG. The
benefits of remote debugging are:

o debug access to one or more VAXELN target systems at the same time

o availability of the debug symbol table provided by compilers, giving
access to variable names, labels and source-line information

o0 your terminal acts as the console device on the target system

7.1.2 Debugging Locally

If you choose local debugging the System Builder includes the entire debugger
utility in your system. Facilities available with the local debugger are:

o0 allows you to debug your system from your target VAX
o those facilities available when debugging remotely are unavailable when

debugging locally

7-1



DEBUGGING

o a network connection between host and target is not essential.

o ability to debug the VAXELN kernel and processes on the running system

7.2 CHOOSING A DEBUGGING MODE

There are four options available on the Edit System Characteristics menu entry
for Debug they are:

O NONE - a fully debugged system not requiring the presence of debugging
facilities

o LOCAL - the local debugger is built into the system image

O REMOTE - the remote debugger is built into the system and EDEBUG is
used to access the target remotely over an Ethernet

O BOTH - provides local and remote capabilities

Omission of the console device from your system will make your terminal the
console device for the system when you establish a connection with EDEBUG.

7.3 KERNEL DEBUGGING

Should you require to debug the VAXELN kernel please refer to [HS:5-23].

7.4 PROGRAM DEVELOPMENT AND DEBUGGING
When you wish to use the debugging facilities those routines you wish to debug

should be compiled with the qualifier /DEBUG and linked with the LINK qualifier
/DEBUG . (See also chapter 4 of this guide)

7.5 EDEBUG COMMAND AND ITS QUALIFIERS

For downline loading a VAXELN system from a remote VAX host the command line
looks like this:

$ EDEBUG /LOAD=DISKS$ELNDISK:[SPECIAL.PROJECTS]]NEW.SYS FRED
This command causes the system NEW.SYS to be loaded through the Ethernet from
the directory [SPECIAL.PROJECTS] on device DISKSELNDISK to the target VAX node

name FRED and to pass control to the remote debugger. A message will appear at
the terminal, at the bottom of the display:

7-2



DEBUGGING

Edebug v2.2-00
Loading "FRED".
Connecting to "FRED".
If during a session the following messages appear:

EDEBUG-F-COMM_ERROR, A communications error has occurred.
%SYSTEM-F-THIRDPARTY, network logical link disconnected by a third party

or

EDEBUG-F-NO_CONNECT, Connection failure
%SYSTEM-F-THIRDPARTY, network logical link disconnected by a third party

Issue the EDEBUG command again WITHOUT the /LOAD qualifier:
$ EDEBUG FRED
To load and start the system across the Ethernet without intervention of the
remote debugger use the /NODEBUG qualifier thus:
$ EDEBUG /NODEBUG /LOAD=DISK$ELNDISK:[SPECIAL.PROJECTS]NEW.SYS FRED

Using the unqualified EDEBUG command enables the user to debug a system that is
running already. For example:

$ EDEBUG FRED

7.6 LOGICAL NAMES AND EDEBUG

Like the VMS symbolic debugger EDEBUG uses the logical names DBGSINPUT and
DBGSOUTPUT for I/0. Initially these logical names are assigned to SYSSINPUT and
SYSSOUTPUT. These may be useful when debug commands are to be read from a
command procedure or debug output is preferred to another device.

7.7 EDEBUG FACILITIES
The facilities available from EDEBUG are similar to those of the VMS debugger.
However instead of debugging just one piece of software in one job on one node
debugging a VAXELN application may involve several jobs, processes and nodes.
EDEBUG identifies the job, process and node in its session command prompt. The
format of the prompt is:

Edebug JOB, PROCESS,NODE>

e.qg. Edebug 7,3> meaning process 3 in job 7 is the target

7-3



DEBUGGING

An EDEBUG session can be in one of two states:

o0 RUNNING - the process that is the target of the current session does
not require attention

0 AWAITING COMMANDS - the current session is suspended awaiting commands
from the terminal

Should you wish to change the target process of the current session you may use
the SET SESSION command.

7.8 CONTROL-C SESSION

The Control-C session provided by EDEBUG permits the user to issue commands to
the system rather than a particular process. It allows commands to be entered
while a current session is active or when the current session is undefined 1i.e.
no debugging sessions. The issue of a Control-C produces a new prompt thus:

EDEBUG CONTROL-C>
Using the Control-C facility does restrict the sorts of command that may be

issued. Commands like Examine, Deposit, Go will NOT execute but several of the
SHOW commands are valid as well as Evaluate and Halt commands.

7.9 EDEBUG COMMANDS

[HS:5-24 ->] carries a complete summary of the commands for use with EDEBUG with
examples of their use. The list below provides a quick reference only

o CALL target(argument-list) - invoke a routine and return to command
mode when the routine completes

o CANCEL BREAK address-expression - cancels a breakpoint at the address
supplied. Also CANCEL BREAK /ALL and CANCEL BREAK /KERNEL

o CANCEL CONTROL - processes start independently of the debugger in the
current session's job

o CANCEL EXCEPTION BREAK - reestablishes the default exception handler
search

0 CREATE JOB program-name(argument-list) - creates a job running the
program named

o CREATE PROCESS target(argument-list) - invoke a routine in the context
of the current program and start it as a process



DEBUGGING

CTRL/C - aborts current operation and gets the attention of the EDEBUG
command interpreter

CTRL/Z - a synonym for EXIT

DEBUG nodename - debug, connect to or 1load and debug a system on
another node. Also DEBUG /LOAD=system nodename

DEFINE identifier::type:=expression - create or redefine a session
variable with specified type and initial value supplied by expression

DELETE PROCESS process-identifier nodename - delete a process,
optionally on another node

DEPOSIT /qualifier address-expression := expression - deposit the value
in expression in a location described by variable reference of address
expression. Various data type qualifiers are allowed: ASCII, BYTE,
WORD, LONGWORD, QUADWORD, REAL, FLOAT, DOUBLE, GRAND, D_FLOAT, G_FLOAT,
HUGE, H_FLOAT.

EVALUATE expression - evaluate the expression. Also EVALUATE /BINARY
expression, EVALUATE /HEX expression, EVALUATE /DECIMAL expression,
EVALUATE /OCTAL expression, EVALUATE /ADDRESS addressexpression

EXAMINE qualifier-list address-expression - examine value in a location
in the target system's memory. Location may be an address expression
or a variable reference. Qualifiers for data types as for DEPOSIT.
Also EXAMINE /INSTRUCTION address:address, EXAMINE /PSL, EXAMINE
/SOURCE.

EXIT - Leave the debugging session

GO address-expression - continue with execution of the session

HALT process-specifier nodename - stops the current or specified
process, optionally on another node

HELP - help for EDEBUG (stored in ELNS :EDEBUG.HLB)

IF boolean expression THEN one-line-command - conditionally execute a
command according to Boolean expression

LEAVE - leave execution of a substituted command
LOAD - install a new program image into the target system

PREDECESSOR expression - move scope of current session's reference a
number of call frames backwards in the calling order

SEARCH /qualifier range target - search current program source for
specified string or identifier. Qualifiers are /NEXT and /ALL.

7-5



DEBUGGING

o SET BREAK /qualifier address-expression DO (one-line-command) - sets
breakpoint at specified address. Qualifiers are /JOB, /ALL, /KERNEL

o SET COMMAND identifier DO (one-line-command) - create a command

O SET CONTROL - opposite of CANCEL CONTROL

O SET EXCEPTION BREAK - stops associated session when any exception
occurs and gives control to the debugger rather than initiating a
search by the kernel for an exception handler. Cancelled with CANCEL
EXCEPTION BREAK

O SET LOG file-specification - causes logging of debug session. Omission
of file-specification stops logging

o SET MODE mode-name - alters several debugger command modes - modenames
may be: DECIMAL, HEXADECIMAL, OCTAL, D_FLOAT, DOUBLE, G_FLOAT, GRAND,
VERIFY, NOVERIFY, LINE, SOURCE, INTO, OVER, NOPROMPT.

O SET PROGRAM image-file-specification - change session's program image

O SET RETURN BREAK - stop session when current routine returns

O SET SESSION /qualifier process-specifier nodename - change session to
another, optionally on another node. Qualifiers are /GO and /KERNEL

O SET STEP - change default stepping action. Options are INTO LINE, OVER
LINE, INTO INSTRUCTION, OVER INSTRUCTION, INTO SOURCE, OVER SOURCE

0 SET TIME time-string nodename - set the system time on specified node
using VMS time notation

O SHOW BREAK - display breakpoint information
O SHOW CALLS - display call history

0 SHOW COMMAND identifier - display one or all commands established with
SET COMMAND. Optional qualifier /ALL

O SHOW JOB job-id nodename - display information about all processes in a
job. Job-id may be string, integer or identifier

0 SHOW MESSAGE expression - show text for wvalue of an exit status
O SHOW MODE - show current operating modes for the debugger

O SHOW MODULE provide information about the program of the current
session

O SHOW PROCESS process-specifier nodename - display system state of a job
or process, optionally on another node. Qualifier /ALL

7-6



7.10

DEBUGGING

SHOW PROGRAM name - show system information about installed program.
Qualifier /ALL

SHOW SESSION process-specifier nodename - show debug state of one or
all debugging sessions, optionally on another node. Qualifier /ALL

SHOW SYMBOL pathname identifier - displays information about a symbol.
Qualifier /DEFINE

SHOW SYSTEM nodename - displays memory, CPU time and jobs on system,
optionally on another node

SHOW TIME nodename - shows current system time, optionally on another
node

SHOW TRANSLATION identfier OR string nodename - displays translation of
a PORT object value, optionally on another node

STEP - execute next line or instruction. Also /INTO /LINE, /OVER
/LINE, /INTO /INSTRUCTION, /OVER /INSTRUCTION, /INTO /SOURCE, /OVER
/SOURCE

SUCCESSOR expression - move scope of current session's reference a
number of call frames forwards in the calling order

TYPE module-name expression:expression - display source lines in range
specified

UNLOAD program-name node - remove previously loaded program image,
optionally from another node

SESSION LOGGING

It is useful to issue a SET LOG command for EVERY session so that progress may
reviewed. The commands issued may be repeated by using the log file as input to
a future debugging session.

7-17






CHAPTER 8

PROCESSES, JOBS AND PROGRAM STRUCTURE

[LRM:2-1, RF:3-1]

8.1 JOB DEFINITION

A job executes a program image (produced by the VMS linker). Jobs are created
automatically for specified program images when a system is started. The
CREATE_JOB procedure enables run-time creation of jobs to run specific images
that have been either included with a system or loaded with the dynamic program
loader.

8.2 PROCESS DEFINITION

Processes are defined as the execution agents for VAXELN programs or for
concurrently scheduled parts of programs. There is always a MASTER process that
executes the program and zero or more subprocesses executing blocks of code
called process blocks. Subprocesses are created dynamically by calling the
VAXELN procedure CREATE_PROCESS

8.3 PROGRAM DEFINITION

A program is the main routine of a job. There may be any number of jobs in a
VAXELN system. Each job may run the same or different program images.

8-1



PROCESSES, JOBS AND PROGRAM STRUCTURE

8.4 ROUTINES IN VAXELN

A routine has two components:

o

o

a heading and

a body

8.4.1 Heading Of Routines

The type of a routine is indicated by its heading. A heading may also include
parameters. Typical headings are:

o

o

8.4.2 Body Of Routines

PROGRAM
FUNCTION
PROCEDURE

PROCESS_BLOCK

The body of a routine is a block and has two components:

O a series of declarations - constants, types, variables and other

routines

O in Pascal and C a compound statement delimited by BEGIN and END

(Pascal) or

{ and 1} (C) containing the code to be executed when the

routine is invoked

8-2



PROCESSES, JOBS AND PROGRAM STRUCTURE

8.5 COMPILATION UNIT
For the purposes of design and development it is often convenient to write an
application in small parts. These small parts are called compilation units in
VAXELN and would exist in separate source files. By default, outer-level
declarations in these compilation units are placed in the exported symbol table
of an object module. An object module is created when a compilation unit 1is
compiled using EPASCAL. A compilation unit consists of an outer-level routine
declaration from one of the following:

0 PROGRAM block declaration

o0 PROCEDURE declaration

o FUNCTION declaration

o PROCESS_BLOCK declaration

o MODULE

The term module is applied to all compilation units in VAXELN the compilation of
which results in a VMS object module (file of type .0OBJ).

8.6 THE MODULE IN VAXELN

In VAXELN the reserved word MODULE is used to form a compilation unit that may
contain:

o module headers - EXPORT, IMPORT and INCLUDE
o CONST declarations

o TYPE declarations

o VAR declarations

o FUNCTION declarations

o PROCEDURE declarations

o PROGRAM block declaration

o PROCESS_BLOCK declarations

o INTERRUPT_SERVICE routine declarations

o separate routine bodies - completing the definitions of routines whose
declarations appeared elsewhere with the directive SEPARATE

8-3



PROCESSES, JOBS AND PROGRAM STRUCTURE

8.7 PROCESS STATES

[RF:3-3]

There are four process states:
0 RUNNING - process has control of CPU
O READY - initial state of process. Run as soon as possible
o0 WAITING - waiting for some condition(s) to be satisfied

O SUSPENDED - has to be RESUMEd explicitly to return to READY

8.8 PROCESS PRIORITIES

[RF:3-4]

There are 32 levels of job priority and 16 for process priority:

Highest Lowest Default
Job priority 0 31 16
Process priority 0 15 8

Job and process scheduling is on a preemptive basis.
Two procedures for resetting priorities in jobs and processes are:
O SET_JOB_PRIORITY

o SET_PROCESS_PRIORITY

8.9 PROCESSES AND MEMORY MANAGEMENT

o0 every job has a PO and Pl page table
0 every process in a job shares the same master PO region

o each subprocess has a Pl page table



PROCESSES, JOBS AND PROGRAM STRUCTURE

Layout of virtual memory

+
+

0000 0200: Read/write data

Read-only code/data

PO Heap data

Message data

3FFF FFFF: Unused

4000 0000:

User mode stack
Pl (if necessary)

Kernel mode stack
(at least 2 pages)

Debug context block
7FFF FFFF: (if needed)

8000 0000: Kernel image

Program 1 image

SO Program n image

Run-time images

Kernel pool and data

BFFF FFFF: Unused

+
+

8-5






CHAPTER 9

TECHNIQUES OF SYNCHRONIZATION

[RF:4-1; LRM:11-1]

9.1 INTRODUCTION

The very nature of real-time renders synchronization a key issue in the
development of such systems.

The sorts of problem that may arise are:
o making things happen together
0 preventing things happening together
o making things happen in order
o making things happen in response to outside events

Lets look at these problems in a little more detail and see how VAXELN might
solve them.

9.1.1 Making Things Happen Together
The filling of bottles with liquid on a production 1line requires that the
bottles arrive beneath the fillers at precisely the moment when the liquid is

emitted. A delay in either direction - early or late - results in spillage and
loss.

9.1.2 Preventing Things Happening Together

Continuing our bottling plant example. Bottle capping must be prevented while
liquid is being emitted into the bottles.

9-1



TECHNIQUES OF SYNCHRONIZATION

9.1.3 Making Things Happen In Order
In the previous example we might imagine a sequence of operations thus:
o process A feeds empty bottles onto the line
o process B controls emission of liquid into empty bottles
o0 process C caps the filled bottles
o process D labels the filled bottles
o process E removes the completed bottle from the line
Clearly, to allow these processes to execute in any order will lead to failure

rapidly. In VAXELN the use of WAITs for EVENTs or SEMAPHOREs is a possible
solution.

9.1.4 Making Things Happen In Response To Outside Events

In our bottling plant example, the exhausting of supplies of 1liquid would
necessitate a halt of the bottling operation. Failure to achieve a satisfactory
resolution of the problem would mean empty bottles with labels and caps! Here
there is a need for the process monitoring liquid levels to be able to interrupt
the process dispensing liquid or to interrupt the process that replenishes the
liquid.

9.2 WAIT PROCEDURES
The are two wait routines in VAXELN:
O WAIT_ANY
o WAIT_ALL
Their call formats are:
WAIT_ALL ( object_list,
RESULT := wait_result,

TIME := tvalue,
STATUS := stat

WAIT_ ANY ( object_list,
RESULT := wait_result,
TIME := tvalue,
STATUS := stat



TECHNIQUES OF SYNCHRONIZATION

The rules for using these procedures are:
o both procedures may wait for 0 to 4 objects
o objects for which the wait is being established may be:
- AREA
- DEVICE
- EVENT
- PORT
- PROCESS
- SEMAPHORE
o WAIT _ANY is satisfied when any object for which it waits satisfies that
wait
O WAIT_ALL is satisifed when ALL objects satisfy the wait simultaneously
o if the value in the wait_result is O the procedure timed out
o if the value in the wait_result parameter for WAIT ANY is 1-4 it
signifies which object satisifed the wait. For WAIT ALL the value is
in the same range but is unpredictable
o the time_value parameter enables a timeout option. Either an absolute

time or delta time may be used. See time specifications later in this
chapter. The wait is satisfied if the timeout expires.

9.3 SATISFYING A WAIT FOR KERNEL OBJECTS
O AREA object - when the object is signaled or owner process of area is
being deleted
o DEVICE object - when the object is signaled
o0 EVENT object - when the object is signaled
O PORT object - when there is a message in the port

o PROCESS object - when the process terminates (or is deleted)



TECHNIQUES OF SYNCHRONIZATION

O SEMAPHORE object - when the object is signaled

9.4 PROCEDURES FOR SYNCHRONIZATION

In addition to WAIT ALL and WAIT_ANY noted above the following lists the other
synchronization-related procedures:

o CREATE_EVENT
o CLEAR_EVENT
o CREATE_SEMAPHORE
o DELETE
o EXIT
o SIGNAL
Their call formats are:
CREATE_EVENT ( event,

initial_state,
STATUS := stat

CLEAR_EVENT ( event,
STATUS := stat

CREATE_SEMAPHORE ( semaphore,
initial_count,
maximum_count,
STATUS := stat

DELETE ( value,
STATUS := stat



TECHNIQUES OF SYNCHRONIZATION

EXIT ( EXIT_STATUS := exit,
STATUS := stat
)
SIGNAL ( value,

STATUS := stat

9.5 THE MUTEX

[RF:2-13, LRM:11-56, Programs SYNCH_5.PAS, SYNCH_6.PAS]

Mutex stands for mutually exclusive semaphore. Using them improves efficiency
when compared with using SEMAPHOREs, WAITs and SIGNALs. A mutex is especially
useful when two or more processes are trying to access a device e.g. a
terminal. Application 8 supplied with your system demonstrates a mutex.

Mutexes are rather like gates. Locking a mutex (using procedure LOCK_MUTEX)
closes the gate and increments the mutex count. The count starts at -1 when the
mutex is created and goes to 0 when first locked. Further processes may lock
the mutex, incrementing the count each time LOCK MUTEX is called. If the
counter is > 0 LOCK_MUTEX calls a WAIT procedure to wait for the semaphore.
When a process has finished with some resource it calls UNLOCK_MUTEX which
decrements the counter. If the counter is >= 0 someone is waiting for the mutex
and the binary semaphore is signalled and a process put into the wait state by
LOCK_MUTEX can proceed to the resource. A simple but efficient metering
facility.
The predeclared procedures to manipulate mutexes are:

o CREATE_MUTEX

o DELETE_MUTEX

o LOCK_MUTEX

o UNLOCK_MUTEX

9-5



TECHNIQUES OF SYNCHRONIZATION

9.6 SPECIFYING ABSOLUTE AND DELTA TIMES

The features of time on a VAXELN system are:

o

the internal representation of time on a VAXELN system is a 64-bit
binary integer - LARGE_INTEGER data type is suitable for storing time

values
the base date and time is: 17-NOV-1858 00:00:00.00

stored as the number of 100 nanosecond units
00:00:00.00

identical with VMS representation of time
available in two forms:
- absolute

- delta

routines available for manipulating time:

since 17-NOV-1858

- GET_TIME (equivalent to VMS SYS$SGETTIM) [LRM:9-60]

- SET_TIME (equivalent to VMS SYS$SETTIM) [LRM:9-61]

- TIME_FIELDS (equivalent to VMS SYS$NUMTIM) [LRM:9-62]

- TIME_STRING (equivalent to VMS SYS$SASCTIM) [LRM:9-64]

- TIME_VALUE (equivalent to VMS SYS$BINTIM) [LRM:9-66]

The details of the call formats for these services are at [LRM:9-59]

9.6.1 Format Of Absolute Time

Absolute time has the form:

dd-mmm-yyyy hh:mm:ss.cc

e.g. 13-JAN-1984 16:30:25.12

representing 25.12 seconds after 1630 hours on the 13th January 1984.

Note that:



TECHNIQUES OF SYNCHRONIZATION

o there are 23 bytes in the string
o month names are the first, or only, three letters of the month

o month names may be uppercase or lowercase or a mixture of upper and
lower cases

o stored internally as a POSITIVE value

9.6.2 Format Of Delta Time
Delta time (or interval) has the form:
dddd hh:mm:ss.cc
e.g. 1061 23:15:18.09

representing 1,061 days 23 hours 15 minutes 18 seconds and 9 hundredths of a
second

Note that:

o there are 16 bytes in the string

o stored internally as a NEGATIVE value
While there are shorthand methods of representing intervals it is recommended
that strings are specified fully whenever possible. For example the string "0
:: 5" represents an interval of 5 seconds. The string "0000 00:00:05.00" also

represents 5 seconds and is clearer from the documentation and maintenance
viewpoint.

Appendix D of this guide contains specific examples of synchronization and calls
to time routines.

9-17






CHAPTER 10

COMMUNICATION BETWEEN JOBS

[RF:5-1, LRM 12-1]

10.1 INTRODUCTION

Like human beings, VAXELN performs functions in jobs. Like human beings, jobs
in VAXELN sometimes need to communicate information about their job (and the

weather and last night's party).

In our working environments communication is sometimes local within the office
or sometimes it extends beyond the bounds of our office to other offices in
distant towns, cities and continents - that is, comparatively speaking, global.
Communication between VAX jobs falls into two broad categories:

o communication within one VAXELN processor - single node

o communication between two or more VAX processors - multi-node

Note that we have not stated between VAXELN processors because we are not
limited in VAXELN to communicating with just VAXELN nodes.

10-1



COMMUNICATION BETWEEN JOBS

10.2 COMMUNICATION WITHIN A SINGLE JOB ON A SINGLE VAXELN NODE

FU— NODE HENRY ----——- +
e +
| I
| JoB a |
| |
pmm————— +
e Fomm +
|
| ETHERNET
________________ —_— —_——— ——— e

In the diagram above job A exists on a single VAXELN node. There are
methods for communicating within a job (intra-job communication) i.e.
master process talking with its subprocesses:

O parameter passing on process creation

o shared data item(s) - PO shared between processes

o shared AREA

o sending MESSAGES

10.2.1 Parameter Passing On Process Creation

o from 0 to 31 parameters
o value or VAR
o limited types:
- ordinal types
- pointer types
- sets with 32 or less elements
- REAL
- AREA

- DEVICE

10-2

several
job A's



COMMUNICATION BETWEEN JOBS

~ EVENT

- MESSAGE
- NAME

- PROCESS

- SEMAPHORE

10.2.2 Shared Data Item(s)
Data in scope in the master process - i.e. not data local to a procedure or
function which goes onto the user stack - may be accessed from a subprocess

block. Care should be exercised in allowing uncontrolled access.
Synchronization is desirable to ensure correct order for readers and/or writers.

10.2.3 Shared AREA
A shared area is flexible because:
© allows INTRA-job communication and
o0 INTER-job communication
In other words a single job using an area for communication between it and its
subprocess/subprocesses can be used by other Jjobs when the system

develops/requires more than a single job. Please see discussion of areas in
inter-job communication later in this section.

10.2.4 Sending MESSAGES
Usually not employed for communication between a master process and its

subprocesses. The overhead of creating a message and additional ports means
other alternatives listed above are preferable.

10-3



COMMUNICATION BETWEEN JOBS

10.3 COMMUNICATION BETWEEN MULTIPLE JOBS ON A SINGLE VAXELN NODE

U NODE WATT -—---—- +
o= +
| job Al +m———e +
tm——— + | job B|
+——— +
f———— +
| job c|
+———— +
Fmmm Fomm +
|
[ ETHERNET
————————————— +———_ —— — —— — — ———— ———— —

In the diagram above jobs A, B and C exist on a single VAXELN node. There are
several methods for communicating between jobs (inter-job communication) e.g.
job A talking with job B:

o0 argument passing on job creation

o shared AREA

o0 sending MESSAGESs

No longer may PO data be shared. At job 1level, memory management protects
against access from external processes.

10.3.1 Argument Passing On Job Creation

When a job is created by the kernel or by a call to CREATE JOB an optional
argument list is available to the program running in that job's master process:

O arguments are strings of up to 100 characters each
o may be specified at:
- system build time in Program Description menu
- call to CREATE_JOB - these arguments override any specified with
the system builder
O two program argument functions are provided:
- PROGRAM_ARGUMENT - result is program argument whose position is

passed to the routine as an integer expression. The first position
is 1.

10-4



COMMUNICATION BETWEEN JOBS

- PROGRAM_ARGUMENT COUNT - result is the number of program arguments.
The routine has no arguments itself.

o0 note that the program heading sometimes contains arguments: e.g. in
Pascal: PROGRAM Driver X ( INPUT, OUTPUT ); and additional file
variables. Here program argument 1 is "INPUT" and program argument 2
is "ouTpPUT"

10.3.2 Shared AREA

[LRM:12-26, Program COMM_5.PAS]

An area is:
0 a shareable region of memory
o created and named using CREATE_AREA
o associated with a binary semaphore
o mapped in PO virtual address space

o physically contiquous 512-byte pages of memory

10.3.3 CREATE_AREA Kernel Service
[LRM:12-28]
CREATE_AREA ( area,
data_pointer,
area_name,
VIRTUAL := base_va,
STATUS := stat
This kernel service either:
O creates an new area or
O maps an existing area
By specifying a base virtual address the area becomes position dependent. This

means that accessing jobs can place pointer values in the area and those
pointers will point to the same position in the PO space of each job.

10-5



COMMUNICATION BETWEEN JOBS

0000 0000:

3FFF FFFF:

0000 0000:

3FFF FFFF:

Position Independent Area

+ -+

PO in job A

mapping in A

| PO in job B

mapping in B

Position Dependent Area

PO in job A

| mapping in A

-—+

+

PO in job B

mapping in B




" COMMUNICATION BETWEEN JOBS

10.3.4 Sending MESSAGESs

[RF:5-1] A message is:
o0 a block of contiguous bytes of memory
o created using CREATE_MESSAGE

o mapped into job's PO virtual address space (accessible to all processes
in job if desired)

o sent by unmapping, and received by remapping - no data copied

o0 sent to and received from a PORT

10.3.5 CREATE_MESSAGE Kernel Service
[LRM:12~11, Programs COMM_*.PAS]
CREATE_MESSAGE ( message,
data_pointer,
STATUS := stat
)i

The data_pointer parameter cannot be a pointer to ANYTYPE. All other types are
supported.

10.4 MESSAGE PORTS

A message port is like a maritime port - a place where carriers queue to unload
cargoes. VAXELN's message ports are queues that contain messages

Important details about Ports:
o created using CREATE_PORT

0 every job has a port by default. Its port value can be obtained by
invoking the procedure JOB_PORT

o port values may be:
- sent in messages
- passed as arguments

- obtained from the RECEIVE procedure

10-7



COMMUNICATION BETWEEN JOBS

- used with WAIT ALL and WAIT ANY - thus waiting for a message
provides an additional synchronization facility

o ports have a limit on the number of messages that may be queued. This
may be specified when the port is created

o job port message limit specified at system build time through Edit
Program Description menu (minimum 0, default and maximum is 16384)

10.4.1 CREATE_PORT Kernel Service
[LRM:12-15, Program COMM_7.PAS]

CREATE_PORT ( port,
LIMIT =
STATUS := stat

)i

The default value for LIMIT is 4.

10.4.2 Naming Message Ports

Ocean bound carriers know to which port they are destined by name. For example
Amsterdam, New York, Tokyo, Singapore etc. In VAXELN too it makes life much
simpler if ports are named. The procedure CREATE NAME is provided for this

purpose.

10.4.3 CREATE_NAME Kernel Service
[LRM:12-13, COMM_3.PAS]

CREATE_NAME ( name,
name_string,
port_value,
TABLE := table,
STATUS := stat

)i

The name_string parameter provides a 1 to 31 character string of the form of an
identifier.

The optional TABLE parameter provides an enumerated value from the list of type
NAME_TABLE:

10-8



COMMUNICATION BETWEEN JOBS

o NAMESLOCAL
O NAMESUNIVERSAL
o NAME$BOTH

The default is NAMESLOCAL. Without the Network Service in your system, names
are placed in NAMESLOCAL by default

The TRANSLATE_NAME procedure returns a port value for the port name passed to
it.

10.5 SENDING AND RECEIVING MESSAGES
VAXELN provides two procedures for the transmission and receipt of messages:
o SEND

o RECEIVE

10.5.1 SEND Procedure
[LRM:12-21, Programs COMM_*.PAS]

SEND ( message,

destination,

SIZE := size,

REPLY := reply port,
EXPEDITE := expedite,

STATUS := stat
)i

The optional parameters, apart from STATUS are:

o SIZE - indicates how many bytes of the message are to be sent. The
default is all and the value if specified must be less than or equal to
the size of the message data.

0 REPLY - provides a port value for replies. Default is sender's job
port.

o EXPEDITE - TRUE or FALSE indicating that the message is either
expedited (TRUE) or a normal message (FALSE - the default)

Expedited messages are available - maximum length 16 bytes - to enable a sender
to jump a queue of ordinary messages. Thus they are rather like a telegram -
often short, usually cryptic - and get to the recipient quicker than normal
mailing methods.

10-9



COMMUNICATION BETWEEN JOBS

JOB R | / +====m--- <———==== [EXPEDITED]
17 | (Max. 16 bytes)

v [message] [message] [message] [message] [message] ....

10.5.2 RECEIVE Procedure
[LRM:12-19, Programs COMM_*.PAS]

RECEIVE ( message,

data_ptr,

port,

SIZE := size,
DESTINATION := dest_port,
REPLY := reply port,
STATUS := stat

)i
The optional parameters, apart from STATUS are:
0 SIZE - stores size in bytes of the message received
O DESTINATION - normally value used by sender to send message

O REPLY - provides a port value for replies. Not set properly if port is
in a circuit

10.6 MESSAGE TRANSMISSION METHODS
There are two methods for transmitting messages:
O using Datagrams

o using Circuits

10.6.1 Using Datagrams
A process gets the value of a port and sends a message to that port. Probably

10-10



COMMUNICATION BETWEEN JOBS
the only advantage of a datagram is it does not require circuits to be connected
and accepted.

Disadvantages of datagrams:
O no guarantee of receipt at destination
0 no guarantee of order of messages
O SEND returns failure if port is full

O message may be lost if port full AND on another node

10.6.2 Using Circuits

Circuits are the recommended method for message transmission. There are several
advantages of circuits

o0 guarantees receipt at destination

o0 guarantees order of messages

o SEND can force waiting state if port full
O can OPEN circuit like a file

O messages are not lost if port is full

Two jobs can establish a circuit between them:

Let us assume that job X is expecting to receive a circuit connection from job
Y. Job X executes a call to the ACCEPT_CIRCUIT procedure and enters the waiting
state - waiting for job Y to issue a CONNECT_CIRCUIT request. Job Y is now able
to gain control of the CPU (since job X is waiting) and issues a call to the
CONNECT_CIRCUIT procedure. When the wait in job X is completed successfully the
circuit is established between the two ports. For job X to send to job Y, job X
prepares its message and SENDs to the port on its half of the circuit. The
message is routed via the circuit to the port on job Y.

10-11



COMMUNICATION BETIWEEN JOBS

NOTE: Issuing an ACCEPT_CIRCUIT call provides an additional synchronization
tool.

10.6.3 ACCEPT_CIRCUIT Procedure

[LRM:12-6, Programs COMM_7.PAS, COMM_8.PAS and others]

ACCEPT_CIRCUIT (  source port,
CONNECT := connect_port,
FULL_ERROR  := flag,
ACCEPT_DATA := accdata,
CONNECT _DATA := conndata,
STATUS := stat

)i

The source_port parameter is the value of the port on which to wait for the
connection request.

The optional parameters, apart from STATUS are:

o CONNECT - an alternative connection port. Use this 1if you are
establishing additional ports while others are still connected

o FULL_ERROR - TRUE or FALSE. The default of FALSE implies that this
process will wait on a SEND if the other port is full

O ACCEPT _DATA - a VARYING STRING of 16 bytes passed to the connecting
process which receives it in the ACCEPT DATA parameter in its call to
CONNECT_CIRCUIT. This is like issuing a greeting on a handshake -
"Hello I am X"

O CONNECT _DATA - 1like ACCEPT DATA except this string contains the
connector's message to X - "Hello I am Y"

10.6.4 CONNECT_CIRCUIT Procedure
[LRM:12-8, Programs COMM_7A.PAS, COMM_8A.PAS and others]
CONNECT_CIRCUIT ( port,

DESTINATION_PORT := dest_port,
DESTINATION NAME := string,

FULL_ERROR := flag,
CONNECT_DATA := conndata,
ACCEPT_DATA := accdata,
STATUS := stat

10-12



COMMUNICATION BETWEEN JOBS

The optional parameters, apart from STATUS are:

o DESTINATION_PORT - destination port value for the connection request
message. This may be omitted if a destination name is supplied.

o DESTINATION_NAME - name of destination port for the connection. This
argument is overridden by DESTINATION_PORT if it is supplied - use one
or the other! This destination port need not be a VAXELN port e.g. it
could be on a VMS node

o FULL_ERROR - TRUE or FALSE. The default of FALSE implies that this
process will wait on a SEND if the other port is full

[o] CONNECT_DATA - a VARYING _STRING of 16 bytes that contains the
connector's message to X - "Hello I am Y"

O ACCEPT DATA - a VARYING STRING of 16 bytes that will take a message
from the accepting process e.g. "Hello I am X"

10.6.5 Handling Full Ports - Flow Control

If ports are not connected (i.e. datagram method) a SEND to a full port returns
an error status.

When the number of messages queued at a port connected in a circuit reaches the
limit for that port - specified in the CREATE PORT call or in the Program
Description menu for Job Ports - two things can happen:

o the sender process enters the waiting state or

o the sender process receives an error status from the SEND procedure

The first outcome will arise if the FULL_ERROR argument was defaulted 1i.e.
FALSE was implied, on a call to the sender's connect/accept circuit routine

The second outcome will arise if the FULL_ERROR argument was set TRUE

Clearly the default option - forcing a process into the waiting state - imposes
a control on the flow of messages without having to program flow controls.

10.6.6 Communication Between Jobs On Multiple VAXELN Nodes

Notice that in the last diagram jobs X and Y were not shown to be existing on
one particular machine. They could have been separated physically on two VAX
processors with only an Ethernet between them.

The very important messages here are:

10-13



COMMUNICATION BETWEEN JOBS

o communication between jobs on one node and between

nodes is identical in programming terms

jobs on

o which node is running a particular job is irrelevant

several

o communication between VAXELN nodes does NOT require node identification
either as a number or as a name

In the diagram below we have bounded the jobs A, B and C within a node called

HENRY -

they reside in that processor's memory.

Some physical distance away,

but on the Ethernet with HENRY is node JOULE with jobs 1, 2, 3 and 4 resident in

its memory.

Communications (circuits) can exist between:

o any job on node HENRY and any other job on node HENRY

o any job on node HENRY and any job on node JOULE

o0 any job on node
0 any job on node

0 any job on node

JOULE and any other job on node JOULE

JOULE and any job on node HENRY

JOULE or node HENRY and a processor on the Ethernet

+ommm o NODE HENRY ---—--- +m—mmmm NODE JOULE —------- +
+———— + = +
| job a| +omm—- + [job 1| +----- +
4o + | job B| - + |job 2|
o + tm———— + t————— +
== + [job 3| +----- +
[job | tomme + |job 4|
- + +———— +
o o m + R et e e +
| I
| I ETHERNET
______________________ B - - e —————————

10.6.7 Disconnecting Circuits

Circuits are disconnected using the DISCONNECT CIRCUIT

procedure.

procedure takes a port value and, optionally, returns a status.

10-14

This



COMMUNICATION BETWEEN JOBS

10.7 HINTS ON COMMUNICATION

use named ports
place port names in the universal name table
use circuits - ALWAYS

avoid expedited messages - careful design should mean a smooth and
regulated flow of messages

remember the port message limit defaults to 4

agree/design message header protocols - the Pascal RECORD structure or
the struct in C are ideal for message packets.

10-15






[RF:7-1]

CHAPTER 11

NETWORK FACILITIES

Network facilities on VAXELN are implemented by the Network Service. This
service has the following capabilities:

o

o

End-node

routes messages between network nodes
maintains a list of universal names
invokes the datalink driver to transmit messages
provides port name translations with the kernel
communicates with other DECnet nodes e.g. with EDEBUG from a VMS host
uses Phase IV DECnet protocols
- Routing Protocol Version 2.0 end-node routing
- Network Services Protocol (NSP) Version 4.0

- Session Control Protocol Version 1.0

routing means:

no network through-traffic can be handled from, say, a VMS node sharing
the same Ethernet

a VAXELN system can communicate with ANY DECnet node on the Ethernet

a VAXELN system can communicate with ANY node in a network via a full
routing node

11-1



NETWORK FACILITIES

End nodes and routing nodes

The world....
"N

END-NODES |
/ \ o + b pm
/ | \ | RS X +----+ VMS | <-router
/ | \ Fomm—————— + s e
/ ' \ |
+ + + + 4= ———+ e + tmm——t————t
| vAXELN | | vAXELN | | VAXELN | | RSTS #-=—=+ VM S | <-router
i Sttt T S e e Sttt 4 e + b ——tp
| | | | Ethernet

The Network Service is built into your system:
o0 by default
o when remote debugging is selected

The Network Service is not needed for intra-node communications and you should
select "No" against Network Service in the Network Node Characteristics Menu of
EBUILD, unless you are using remote debug.

11.1 LOCAL AND REMOTE LINKS WITH CIRCUITS

The same circuit services - CONNECT CIRCUIT and ACCEPT _CIRCUIT - are used
whether the connection is local or remote. The Network Service establishes an
NSP logical link between the ports involved whether the remote port is VAXELN or
non-VAXELN.

11.2 DECNET MESSAGE SIZE

Both DECnet and Ethernet impose a limit on message size. NSP calls this the
segment size and this name appears in the Network Node Characteristics menu of
EBUILD. The default size is 576 bytes with a minimum of 192 and maximum of 1470
bytes. From any of these values must be subtracted 32 bytes of header, so the
smallest segment is 160 bytes and the largest 1438 bytes.

The value you choose should correspond with that for all your other VAXELN nodes
as well as those VMS nodes with which you wish your VAXELN system to
communicate. To find the Buffer Size value for your VMS node you must:

0 invoke NCP

11-2



o enter the command SHOW EXECUTOR CHARACTERISTICS or

O SHOW node-name CHARACTERISTICS

For example

NCP> SHOW EXECUTOR CHARACTERISTICS

Node Volatile Characteristics as of 27-MAY-1987 13:56:08

Executor node = 1.239 (S10VMS)

Identification
Management version
Incoming timer
Outgoing timer

NSP version

Maximum links

Delay factor

Delay weight
Inactivity timer
Retransmit factor
Routing version

Type

Routing timer
Broadcast routing timer
Maximum address
Maximum circuits
Maximum cost

Maximum hops

Maximum visits
Maximum area

Max broadcast nonrouters
Max broadcast routers
Area maximum cost
Area maximum hops
Maximum buffers
Buffer size

Default access
Pipeline quota
Default proxy access
Alias maximum links

DECnet-VAX V4.5,
v4.0.0

45

60

v4.0.0

32

80

5

60

10

v2.0.0

routing IV

600

180

255

16

1022

30

63

63

64

32

1022

30

100

576 LL=========s===
incoming and outgoing
3000

incoming and outgoing
32

VMS V4.5

11-3

NETWORK FACILITIES



NETWORK FACILITIES

NOTE
The segment size DOES NOT limit the size of your messages it
simply indicates into what size packets your message will be
segmented.

For example:

Let your message be 1800 bytes and segment size 576 (default)
Your message will require 4 segments thus:

where:
hd = header
------------------------------ ETHERNET
Bt I T L e e I e +
| hd | segment | | hd | segment | | hd | seqgment | | hd | segment |
| 32| 5544 | | 32| s44 | | 32| 544 | 32 | 168 |
o + + e + e +

11-4



NETWORK FACILITIES

11.3 NAME SERVERS
[RF:7-6]

A name server is a VAXELN target responsible for maintaining the universal name
list for the network. At any instant there is only one name server.

When processes create, delete and translate port names the local kernel
communicates with 1its Network Service which in turn informs the network's name
server. The name server acknowledges with a status message available in the
optional STATUS parameter to CREATE_NAME, DELETE_NAME and TRANSLATE NAME.

Name service requests sent to name server...

Ethernet->
Fom— - JOB A ——--=-= +
TRANSLATE_NAME (... N + T +
| | | Network | to NAME SERVER
CREATE_NAME (ee. |--->| KERNEL |--->| | mmm e >
| | | service |
DELETE_NAME (eu. e + P —— +
e +

+mmmmmme JOB A -—----- +

I

| sTATUS := ... ); tommm + e +

| | | | Network | from NAME SERVER

| sTAaTUS := ... ); <---| KERNEL |<---| | <=
I | | service |

| STATUS := ... ); e + PR +

I

+ + Ethernet->

11-5



NETWORK FACILITIES

11.3.1 Picking A Name Server
Each node keeps a list of universal names it has created even though it may not
have the Name Server characteristic. This facilitates the selection of a
current name server.
There are two instances when a name server has to be picked:
o when the network starts
0 when the current name server fails
The node selected is:
o the node with the highest Ethernet address
It performs its role:
0 by broadcasting its Ethernet address periodically
o 1if this broadcast is not heard:

- the node with the highest Ethernet address is elected name server

- this node receives universal name lists from every other node

NOTE

DEC recommends that with less than 20 nodes in a VAXELN network,
every node should take the default characteristic of Name
Server. In the event of single node failures there is then an
ample pool of volunteer name servers. A large number of name
servers implies a large amount of network message traffic just
to maintain the name service.

11.4 NODE IDENTIFICATION
O VAXELN to VAXELN operations involving files or circuits DO NOT need
node identification

O VAXELN to VMS or VMS to VAXELN, for example, DOES require
identification of nodes by one of two forms:

- node name or

11-6



NETWORK FACILITIES

- node address

Please see chapter 6 for definitions of node name and node address.

The NCP command SHOW KNOWN NODES or the DCL command SHOW NETWORK
reveal node names and addresses thus, for example:

$ SHOW NETWORK

VAX/VMS Network status for local node 1.239 S10VMS on 27-MAY-1987 14:00:23.15

Node Links Cost Hops Next Hop to Node
1.239 S10VMS 0 0 0 (Local) -> 1.239 S10VMS
1.241 S4VMS 0 4 1 BNT-0 -> 1.241 S4VMS
1.249 M1VMS 0 9 2 BNT-0 -> 1.241 S4VMS
1.251 S6VMS 1 4 1 BNT-0 -> 1.251 S6VMS
1.254 S7VMS 0 5 2 BNT-0 -> 1.251 S6VMS
1.255 S8VMS 0 4 1 BNT-0 -> 1.255 S8VMS
Total of 6 nodes.
$
$
For example:
1.241 S4VMS ....
node name: S4VMS
node address: 1.241
which breaks down into:
area code: 1

node number: 241

11.4.1 Using Node Names

Use node names from a non-VAXELN system e.g. VMS. For example VAXELN node
ELNODE might be interrogated thus from an adjacent VMS node:

$ DIRECTORY /PROTECTION ELNODE::DISK$ROBOTLOG:[ARMSLOG]* .MVT

11.4.2 Using Node Addresses
Use node addresses from VAXELN nodes to, say, a VMS node. For example VMS node

11-7



NETWORK FACILITIES

S4VMS might be interrogated thus from an adjacent VAXELN node:
OPEN ( VMSfile,
FILE_NAME := '1.241::DISK$PROJECTS:[ROBOTS]ARMS.DAT');
NOTE

VMS has no node name translation facility like that of VAXELN

11.5 MANAGING YOUR VAXELN NETWORK
There are two tools to help you look after your VAXELN network:
o0 the Network Management Listener (NML) and
o the Loopback Mirror
To use the VAXELN NML the node name and address of the VAXELN node must be
present in the NCP database of the VMS node. The commands for achieving this

were described in chapter 6.

To use the VAXELN NML for a VAXELN node called ELNODE, invoke NCP from VMS and
issue these commands:

o0 NCP> SET EXECUTOR NODE ELNODE

o NCP> SHOW EXECUTOR

The output will look something like:

$ RUN SYSSSYSTEM:NCP

NCP> SET EXECUTOR NODE ELNODE

NCP> SHOW EXECUTOR

Node Volatile Summary as of 16-DEC-1986 10:45:55

Executor node = 1.376 (ELNODE)

State = on
Identification = VAXELN V2.0
NCP>

Alternatively the following command achieves the same response:

$ RUN SYSSSYSTEM:NCP
NCP> TELL ELNODE SHOW EXECUTOR

11-8



NETWORK FACILITIES

11.6 NCP COMMANDS SUPPORTED BY THE VAXELN NML
The following NCP commands are supported by VAXELN NML:
o LOOP NODE node-id WITH data-type COUNT count LENGTH length

The parameters WITH, COUNT and LENGTH are optional and have
the following possible values:

WITH : MIXED (default), ONES or ZEROS
COUNT : number of blocks to be sent, 1 to 65 535, default 1
LENGTH : length 1 to 65 535 bytes, default 40 bytes,
of blocks to be sent
O SHOW EXECUTOR parameters

The parameters are:

SUMMARY, STATUS, CHARACTERISTICS or COUNTERS

O SHOW KNOWN CIRCUITS parameters
The parameters are:

SUMMARY, COUNTERS

O SHOW KNOWN LINES parameters
~The parameters are:

SUMMARY, COUNTERS

O SHOW NODE node-id parameters
The parameters are:

SUMMARY, COUNTERS

O ZERO EXECUTOR

O ZERO KNOWN CIRCUITS
O ZERO KNOWN LINES

O ZERO NODE node-id

The Loopback Mirror is useful for testing communication between host VMS system
and a remote VAXELN node. For example, using ELNODE as our remote VAXELN node:

11-9



NETWORK FACILITIES

$ RUN SYSSSYSTEM: NCP
NCP> LOOP NODE ELNODE COUNT 100 LENGTH 50 WITH ZEROS

This sends 100 blocks of 50 bytes each containing binary zero
to ELNODE

For testing communication between VAXELN node ELNODE and another VAXELN node
called, say, ZENITH use the TELL command thus:

$ RUN SYSSSYSTEM:NCP
NCP> TELL ELNODE LOOP NODE ZENITH COUNT 20

This sends 20 blocks of 40 bytes each containing a combination
of zeros and ones (defaulted on LENGTH and WITH) from ELNODE
to ZENITH

11.7 CONNECTIONS TO AND FROM VMS

For full information please see the DECnet-VAX User's guide.

11.7.1 Connecting To VMS From VAXELN

Using the CONNECT_CIRCUIT procedure the parameter DESTINATION NAME can take
strings of this form:

'nodenumber : :objectname’' or 'nodenumber ::objectnumber’

For example:

CONNECT_CIRCUIT ( myport,
DESTINATION_ NAME

¢= '7.347::STARTIT',
STATUS =

Return_status
)i

This requests execution of STARTIT.COM in the default DECnet account
on node 7.347 - area 7 node number 347.

or:

CONNECT CIRCUIT ( my other_port,
DESTINATION NAME
STATUS

'11.636::27',
Return_status

)i

This requests execution of object 27 on node 11.636 - area 1l
node number 636.

To see what objects are on your VMS system issue the NCP command SHOW KNOWN

11-10



NETWORK FACILITIES

OBJECTS.
From VMS the connection is achieved by using a file OPEN statement. This could
be the DCL OPEN command or a high-level language version of OPEN, using the

logical name SYSSNET. The DCL command CLOSE or high-level language equivalent
performs a DISCONNECT_CIRCUIT operation.

11.7.2 Connecting To VAXELN From VMS

From VMS use the language statement OPEN or SYSSASSIGN system service to make a
connection. The name used should have the form:

'nodename: : "TASK=por tname"'
where:
nodename is the name of the VAXELN node
portname is the name of the VAXELN port
The VAXELN program needs to have a port and issue an ACCEPT_CIRCUIT call to
complete the connection from VMS. If connecting to VAXELN by object number

create a port name of the form:

'NET$OBJECT_objectnumber’

11-11






CHAPTER 12

USING FILES

[RF:9-1, LRM:15-1]

12.1 FILE ROUTINES
In addition to the standard file routines:
o GET
0 RESET
o READ
o PUT
O REWRITE
0 WRITE
o EOF
and for text files:
o EOLN
o PAGE
o READLN
0 WRITELN
the following extensions are available in VAXELN Pascal:

o OPEN

12-1



USING FILES

o CLOSE
o FIND
o LOCATE
o FLUSH
and for text files.
0 GET_CONTROL KEY
The following file utilities are available [RF:9-7, LRM:15-55]:
o COPY_FILE
O CREATE_DIRECTORY
O DELETE_FILE
0 DIRECTORY_CLOSE
o0 DIRECTORY_ LIST
O DIRECTORY_OPEN
O PROTECT_FILE
O RENAME FILE
Disk utility procedures available are [RF:9-11, LRM:15-73]:
O MOUNT_VOLUME
o INIT_VOLUME
o DISMOUNT_VOLUME
Tape utility procedures available are [RF:9-13, LRM:15-83]:
O MOUNT TAPE_VOLUME
o INIT_TAPE_VOLUME

o DISMOUNT_TAPE_VOLUME

12.2 FILE OPENING AND CLOSING

There are two ways files may be opened (and closed):

12-2



USING FILES

o0 explicitly - using OPEN (and CLOSE)
o implicitly - using RESET, REWRITE. An implicit reset using READ or
implicit REWRITE using PUT will achieve the same result.
NOTE
There is a cautionary note at [LRM:15-2] regarding closure of

files. In particular the DELETE procedure when used with
processes may result in buffered data to/from files being lost

12.3 INTERNAL AND EXTERNAL FILES
External files are associated with devices like disks or tapes.

Internal files are not associated with devices and may be used as structures in
memory that may be accessed sequentially

12.4 FILE TYPES
Only one file type is supported currently:

O SEQUENTIAL

12.5 FILE ACCESS
Two methods of file access are available:
O sedquential

o direct (or random) - but records must be FIXED length

12.6 RECORD TYPES
Two types of record are supported:
o fixed length

o variable length

12-3



USING FILES

12.7 ENUMERATED TYPES USED IN FILE HANDLING

In addition to those predeclared enumerated types listed earlier in Chapter 2
there are the following:

[LRM:15-22]

Enumerated Type Values

FILESPROTECTION_ CATEGORIES FILESSYSTEM
FILESOWNER
FILESGROUP
FILESWORLD

FILESPROTECTION_TYPES FILESDENY_ READ ACCESS

FILESDENY WRITE_ACCESS
FILESDENY EXECUTE_ACCESS
FILESDENY DELETE_ACCESS

12.8 FILE AND DEVICE SPECIFICATIONS
[RF:9-2, LRM:15-14]

For the file utility procedures listed above the limits on file specification
are 1 to 255 characters

Storage devices for which drivers are supplied with VAXELN are listed in table
10-1 at [RF:10-3].

The format of a device name is:
0 device type
O controller

O unit number

For example device name: DUA2

DU device type - e.g. RX50 floppy disk
A controller A
2 unit number 2

This form of name is used in the Device Description menus in EBUILD

12-4



USING FILES

12.8.1 Specifying Volume Names

In the System Characteristics menu of EBUILD a volume name may or may not be
specified for each device:

o Specified - volume mounted automatically

o0 Not specified - volume can be mounted dynamically using MOUNT_VOLUME -
if it is a disk or MOUNT TAPE VOLUME - if it is a tape

The File Service will try to mount a volume in the drive if:
0 no volume name is supplied for the device

o the volume name is not the same as the initialization name for the
volume

In the latter case a console message will appear informing of this event.

A complete device-volume description might 1look 1like this in the System
Characteristics menu of EBUILD:

. . . . .

Instruction emulation String Float Both None
Boot method Disk ROM Downline

Disk/volume names "DUAl1 ERRLOG", "DUA2 DATA"

The corresponding entry in the EBUILD .DAT file would look like this:

characteristic /volumes=("DUAl ERRLOG", "DUA2 DATA")

12.8.2 Default Volume

In the example above ERRLOG is the default volume for the File Service. If you
don't specify a volume then the first volume mounted becomes the default volume

12.8.3 Volume Labels

Volume labels have the form:

12-5



USING FILES

o DISKSname - for disk volumes
o TAPE$name - for tape volumes

The name field MUST match the volume in the drive

12.8.4 Universal And Local Volume Names
Once a volume is mounted either
0 by the File Service or
o by MOUNT VOLUME or MOUNT_TAPE_VOLUME

the name - DISK$name or TAPESname - becomes a UNIVERSAL name and identifies the
volume from ANY local area network node.

However, if another volume 1is mounted with the same name as an existing
universal volume name a LOCAL - local to that node - volume name is created.
This would enable duplicate copies of data to held on volumes in the local area

network.

12-6



USING FILES

Examples of the use of volume names
Let us assume our earlier definition:
Disk/volume names "DUA1 ERRLOG", "DUA2 DATA"

The volumes names are: DISKSERRLOG and DISKSDATA
The default volume for the network is: DISK$SERRLOG

OPEN ( Newfile,
FILE_NAME

:= [IO_ERRORS]ERRORS.1985,
HISTORY :

[
HISTORYSOLD );

opens an existing file on the default network volume. The full
file specification would be DISK$ERRLOG:[IO_ERRORS]ERRORS.1985

OPEN ( Newfile,
FILE_NAME

= DUA2:[IO_ERRORS ]ERRORS.1985,
HISTORY =

HISTORYSOLD );

opens an existing file on the LOCAL device DUA2.

OPEN ( Newfile,
FILE_NAME :
HISTORY :

ISKSDATA: [I0_ERRORS ]ERRORS.1985,
ISTORYSOLD );

& o

opens an existing file on the network volume DISKSDATA, and
the local volume DISKSDATA too, if one exists.

The rules are:
0 device name specified e.g. DUA2, the device is local to that node

o device name specified e.g. DISKSLOGGER, the device is a UNIVERSAL
network volume and possibly if an individual node creates its own
DISKSLOGGER a local volume name too

This means that devices can be attached to just one node in a local area network

and VAXELN systems have access, transparently, to devices (and files) on that
node. Once again universal names greatly facilitate programming in VAXELN.

12.9 REMOTE FILE ACCESS

There is no requirement to hard-code node names for accessing files remotely.
As discussed above the universal name concept applies to devices and volumes as
it does to ports.

The File Access Listener (FAL) is responsible for connection requests to other

12-7



USING FILES

network nodes. These connections might be:

o to open a file

0 to execute a command procedure on a VMS node
A VMS node can access files on a VAXELN node - authorization permitting (see
Chapter 14). The files maintained and manipulated by VAXELN's File Service have
the same structures as their disk and tape counterparts on VMS.
Many of the VMS file utilities may be used remotely. For example, using our
VAXELN node ELNODE cited earlier with device specifications "DUAl ERRLOG", "DUA2
DATA", from a remote VMS node:

$ SEARCH /NOHEADER /LOG -
_$ ELNODE::[1985_DATA]CONSOLE_LOG.DAT "Message number"

This references DISK$SERRLOG - the default for the node

$ DIFFERENCES ELNODE: :DUA2:[SYSTEM]TODAY.DAT;45 -
_$ ELNODE: :DUA2: [SYSTEM]TODAY .DAT; 44

This references the local device on ELNODE DUA2

$ EDIT ELNODE::DISKSDATA:[REPORTS]13_ JANUARY 1985.DAT
This invokes the default editor from the VMS node to
edit the file on the local area network node ELNODE.

The file may well not exist on ELNODE but on the node
acting as file server

12-8



CHAPTER 13

DEVICES, DRIVERS AND INTERRUPTS

[RF:6-1, 10-1, LRM:14-1]

13.1 INTRODUCTION

This chapter defines some of the terms used when considering devices and the
software associated with them.

It is beyond the scope of this course to discuss the design, writing and
implementation of a device driver.

13.2 DEFINITIONS
13.2.1 Device - Definition
The VMS Glossary defines a device as:

"The general name for any peripheral hardware connected to the
processor that is capable of receiving, storing, or transmitting

data.

Card readers, line printers and terminals are examples of
record-oriented devices. Magnetic tape devices and disk devices
are examples of mass storage devices. Terminal line interfaces
and interprocessor links are examples of communications devices.
Devices are not necessarily hardware".

13.2.2 Device Drivers - Definition

The glossary to "Writing a Device Driver for VAX/VMS" (April 1986) states that a
device driver is:

13-1



DEVICES, DRIVERS AND INTERRUPTS

"The set of instructions and tables that handles physical I/0
operations to a device".

13.2.3 Interrupts - Definition

The glossary to "Writing a Device Driver for VAX/VMS" (April 1986) states that
an interrupt is:

"An event other than an exception, or a branch, jump, case or
call instruction that changes the normal flow of instruction
execution. Interrupts are generally external to the process
executing when the interrupt occurs".
This definition is in terms of assembly language but the driver sources supplied

with VAXELN are in Pascal. That makes it easier for high-level language
programmers to follow the code.

13.3 DRIVERS SUPPLIED WITH VAXELN

A directory listing of the ELNS$ directory will reveal source files for some of
the device drivers supplied with VAXELN:

$ DIR ELNS$:*DRIV*.PAS

Directory SYS$SYSDEVICE:[ELN]

BDDRIVER.PAS;1 DDDRIVER.PAS;3 DHVDRIVER.PAS;3 DQDRIVER.PAS; 3

DUDRIVER.PAS;3 DZVDRIVER.PAS;3 LCDRIVER.PAS;3 LPVDRIVER.PAS; 3
MUDRIVER.PAS;3 XBDRIVER.PAS;1 XEDRIVER.PAS;3 XQODRIVER.PAS; 3

YCDRIVER.PAS;3

Total of 13 files.

Chapter 10 of the VAXELN Run-Time Facilities Guide describes the features of
these drivers. The code for LPVDRIVER is a good start for getting a feel for
what is involved in writing a device driver. Simple examples are presented in
LRM Chapter 14.

13.4 INTERRUPT SERVICE ROUTINES

Just a cursory glance through the code LPVDRIVER.PAS reveals several occurrences
of the word INTERRUPT.

In order that a device can receive attention when it has data to be handled it
has to have the help of the VAXELN kernel. This is achieved by connecting an
interrupt service routine (ISR) to a device interrupt. An ISR is a piece of

13-2



DEVICES, DRIVERS AND INTERRUPTS

user-written code executed by the kernel. In some ways it is similar to the
asynchronous systems traps of VMS - user-written code executed by the operating
system.
So that a program may retrieve data from a device, an ISR can talk to a program
via an area of memory called a communication region. This region is in SO
virtual address space (system)
ISRs can access data only as follows:

O 1in locally declared variables

0 in the device's first control/status register (CSR), pointed to by the
first parameter of the routine

o in the communication region, pointed to by the second parameter of the

routine

In pictorial form the components discussed above are arranged like this:

-+ -+
+ -

DEVICE DRIVER
Fm——————— +
| l #mmms
| DEVICE +->INTERRUPT--> KERNEL~->-+---->| ISR |
| | FOR
o + n
I
+ + -+
I
v
Fomm + e T +
| PROGRAM |<-=--==mmm—m—mmmmmm e >| COMMUNICATION |
+omm e + | REGION |
+ -+

The connection of an ISR to an interrupt is made with the CREATE DEVICE kernel
service.

13-3



DEVICES, DRIVERS AND INTERRUPTS

13.4.1 Call Format For CREATE_DEVICE

The call format for CREATE_DEVICE is:

CREATE_DEVICE ( device_name,
device,
VECTOR_NUMBER
SERVICE_ROUTINE

relative_vector,
routine_name,

REGION := region_pointer,
REGISTERS t= register_pointer,
ADAPTER_REGISTERS := adapter_pointer,
VECTOR := vector_pointer,
PRIORITY := interrupt_priority,

POWERFAIL_ ROUTINE
STATUS := stat
)i

power_routine,

Note that provision of the name of an ISR (parameter SERVICE ROUTINE) is
optional.

An ISR would not be required if a device is to be polled. The technique of
polling might be appropriate for a device like a thermometer where regular
readings of the register or registers associated with the device, for display
purposes, is all that is required.

13.5 DISABLING INTERRUPTS

It is important that a device should not interrupt while its own registers are
being initialized. Disabling interruptions from a device or devices affects the
way a VAX processor behaves. Processes calling DISABLE_INTERRUPT must be
running in kernel mode.

13.6 INTERRUPT PRIORITY LEVELS

There are 32 levels of interrupt priority on a VAX processor with 0 being the
lowest and 31 being the highest. The range 0 through 15 covers the software
IPL's and 16 through 31 the hardware IPL's. A detailed list appears at [RF:6-3]
in Table 6-1 which is reproduced below for convenience.

13-4



DEVICES, DRIVERS AND INTERRUPTS

Interrupt Priority Levels

HARDWARE IPLs EVENTS
(decimal)
31 Machine check; kernel stack not wvalid
30 Power failure
25-29 Processor, memory or bus error
24 Clock (except MicroVAX which is IPL 22)
16-23 Device IPLs, with 20-23 corresponding to UNIBUS or Q22
bus request levels 4-7 respectively
SOFTWARE IPLs EVENTS
(decimal)
9-15 Unused
8 DEVICE signal
7 Timer process
6 Queue asynchronous exception
5 Kernel debugger
4 Job scheduler
3 Process scheduler
2 Deliver asynchronous exception
1 Unused
0] User process level

To prevent interruption at a particular level raise the IPL to that level. For
example raising IPL to 4, stops interruptions from that level and below.

The raising of IPL allows a process to synchronize itself with an ISR

13.7 UNEXPECTED INTERRUPTS - POWER FAILURE
Power failure is the most likely unexpected interrupt to occur to a VAXELN
system. Because they are unpredictable these sorts of interrupt are classed as

asynchronous. The penultimate parameter to the kernel procedure CREATE DEVICE
provides the option of specifying a powerfail recovery routine.

13.8 POWERFAIL RECOVERY ROUTINES
The important features of power recovery ISRs are:

o they are called BEFORE the kernel restarts any other process or
standard ISR

o they must perform clean up operations like:

13-5



DEVICES, DRIVERS AND INTERRUPTS

- resetting the controller of the device - e.g. putting cylinder and
track values back to a starting level on a disk controller

- prevent restart of part-finished 1/0

- signal processes waiting for the device - no interrupts will occur
after reinitialization

A look at the powerfail routine for LPVDRIVER shows the setting of a Boolean in
the communications region indicating power failure and the signalling of the
device:

{ Interrupt communication region }
comm_region = record

powerfail : boolean;
busy ¢ boolean;
lp_error : boolean;

end; { record }

.

interrupt_service powerfail recovery ( lpvll : "“lpvll registers;

comm "comm_region );
{++
{ powerfail_recovery - Powerfail recovery interrupt service routine
{
{ 1Inputs:
{
{ lpvll - lpv-1l registers pointer
{ comm - Interrupt communication region
{
{ outputs:
{
{ powerfail flag set
{--1
begin

with comm”™ do
begin

{ If the device was busy, signal the waiting process }

if busy then
signal_device;
powerfail := true;
end;

13-6



DEVICES, DRIVERS AND INTERRUPTS

13.9 DEVICE INITIALIZATION ROUTINES

Your VAXELN development system includes a number of drivers for real-time
devices. The initialization routines provided are:

O AXV_INITIALIZE - for ADV or AXV analogue to digital converters

O KWV_INITIALIZE - for KWV programmable realtime clocks

o DLV_INITIALIZE - for DLV asynchronous serial line controllers

o DRV_INITIALIZE - for DRV parallel line interfaces

Also included are READ and WRITE procedures for each of these devices. Details
are at [LRM:14-41]

13-7






CHAPTER 14

SYSTEM SECURITY

[RF:8-1]

14.1 INTRODUCTION
The components of a VAXELN system that may require protection are:
o the hardware

o0 the software

14.1.1 Protecting The Hardware

Physical security of hardware may already be in place for existing equipment.
Floppy disks and tape cartridges are small, compact items and easily removed in
pockets or briefcases. Their removal may mean the departure of a complete and
expensively-developed VAXELN system with the risk that the thieves may make
copies for further gain. Even for VAXELN systems downline loaded the security
of the master files on a host VAX must be considered.

14.1.2 Protecting The Software

Where downline loading is the preferred method there are potential security
problems from other nodes on the network. Users on adjacent nodes may attempt
to access data files stored on and manipulated by a VAXELN target machine. The
consequences of a database or confidential material being read, corrupted or
made inaccessible to the VAXELN target are obvious.

14-1



SYSTEM SECURITY

14.2 DEFAULT PROTECTION ON VAXELN
There is no protection on VAXELN. Because security may be more of a hindrance

or a nuisance, when it is needed the appropriate EBUILD options must be
specified explicitly.

14.3 VAXELN SYSTEM SOFTWARE PROTECTION

Apart from the VAX memory management facilities on VAXELN, the kernel does not
impose control on programs. Some of the things that VAXELN does NOT do are:

o control operating modes - kernel mode is freely available
o 1limit priorities - programs can change priorities freely
o 1limit process creation - no subprocess limits

VMS systems control access and resources by using privileges, quotas and limits.
There are no such entities on a VAXELN system.

This freedom and accessibility may require VAXELN system designers and
programmers to incorporate some authorization facilities similar to those on

VMS. This will prevent the naive as well as the malicious gaining access to a
VAXELN system and its resources

14.4 AUTHORIZATION FACILITIES
Building the authorization service into a system allows a database of users to

be created and maintained. Those users are authorized to access the system
having satisfied the authorization service of their identity.

14.4.1 Identifying Connection Requests
The authorization service identifies users in one of two ways:
o user name and host node - proxy access control)

o user name and password - destination authorization - using an access
control string

14-2



SYSTEM SECURITY

The diagram below shows how the two access methods work 5
Node "MAYHEM" Node "BEDLAM"
+-= + + - —_—
| Application |<-- User: BRAINS | Application |
o + + -—+
| Network & | | Network & |
| Authorization | | Authorization |
| Services [ Services |
O o + + R -+
I n
v |
pmmmmmm e "BRAINS,MAYHEM" -—-——-—=—-————— +

Proxy Access Control

Node "MAYHEM" Node "BEDLAM"
o + + +
| Application | | Application |
mm e + + —+
| Network & | | Network & |
| Authorization |<-- User: HAL2001l | Authorization |
| Services | Password: ARTHURC [ Services |
e e + e oo +

" |
| v
P "HAL2001 ARTHURC" - -+

Destination Authorization

14.5 SPECIFYING REMOTE DESTINATIONS

14.5.1 Connecting To Non-VAXELN Nodes

For connection using object names the node number forms look like this:
0 'nodenumber : :objectname’

0 'nodenumber"username password"::objectname'’

14-3



SYSTEM SECURITY

o 'nodenumber"username"::objectname
o 'nodenumber"[ggg,mmm] password"::objectname
For connection using object numbers the node number forms look like this:
o0 'nodenumber : :objectnumber’
o 'nodenumber”username password"::objectnumber’
0 'nodenumber"username"::objectnumber

o0 'nodenumber"[ggg,mmm] password"::objectnumber

14.5.2 Connecting To VAXELN Nodes
For connection using object names the node name forms look like this:
O 'nodename::objectname’
o 'nodename"username password”::objectname'
0 'nodename"username"::objectname
o0 'nodename"[ggg,mmm] password"::objectname
For connection using object numbers the node name forms look like this:
0 'nodename::objectnumber’
o0 'nodename"username password"::objectnumber'
O 'nodename"username"::objectnumber

o 'nodename"[ggg,mmm] password"::objectnumber

14.6 INCLUDING AUTHORIZATION IN A SYSTEM

The relevant network node characterstics page of EBUILD has this display:

14-4



SYSTEM SECURITY

System X - Editing Network Node Characteristics

Network device UNA QNA Other
Node name

Node address 0]

Authorization required Yes No

Authorization service Local Network None

Authorization file AUTHORIZE.DAT
Default UIC [1,1]
Node triggerable Yes No

.
L,y

14.6.1 Authorization Required
There are two possibilities:
o0 Yes - means there will be no admission without authorization

0 No - means no authorization required. Free admission

The default is NO.

14.6.2 Authorization Service

There are three possibilities:
o0 Local - authorization required for this system only
o0 Network - authorization handler for whole network included
O None - no service required

The default is NONE.

Only one node may be authorization server for a network and there must
least one name server in the network too

14-5

be at



SYSTEM SECURITY

14.6.3 Authorization File
The authorization file is AUTHORIZE.DAT by default but another file

specification may be supplied if preferred. If the file does not exist one will
be created.

14.7 USING AND MAINTAINING THE AUTHORIZATION SERVICE
When the authorization service is first established on a node only programs
running on that node may manlpulate the authorization file because the file will
be empty. The following procedures are supplied for maintaining the
authorization service:

o ELNSAUTH_ADD_USER - adds a record for a new user

o ELNSAUTH_MODIFY USER - modifies the record for an existing user

o ELNSAUTH _REMOVE USER - removes the record for an existing user

o ELNSAUTH_SHOW_USER - returns information about a user

These routines are described in detail at [LRM:11-40]. Currently the maximum
lengths for authorization record fields are:

O username - 20 bytes
o password - 20 bytes - stored in a hashed/scrambled form

o0 nodename - 32 bytes

128 bytes - information to be stored with the other data

o userdata

Only authorized users with a UIC group number of OCTAL 10 or less may manipulate
the authorization database.

14.8 FILE SECURITY FACILITIES

Normal Files-11 protection facilities are available. Protection masks may be
specified for whole volumes and defaults for files thereon when using
INIT VOLUME or for individual files using the PROTECT FILE procedure

Example programs showing file handling will be found in Appendix G to this
guide.

14-6



CHAPTER 15

HANDLING EXCEPTIONS

[RF:11-1, LRM:13-1, RTL:7-1]

15.1 INTRODUCTION

This chapter explains what is meant by the term exception and how VAXELN systems
can handle different types of exception. The exception handling facilities
provided by VAXELN are discussed as well as those for message handling.

15.2 DEFINITIONS
The VMS Glossary defines EXCEPTION as:

"An event detected by the hardware or software (other than an
interrupt or jump, branch, case or call instruction) that changes
the normal flow of instruction execution. An exception is always
caused by the execution of an instruction or set of instructions
(whereas an interrupt is caused by an activity in the system
independent of the current instruction). There are three types
of hardware exception: traps, faults and aborts. Examples are
attempts to execute a privileged or reserved instruction; trace
traps; compatibility mode faults; breakpoint instruction
execution and arithmetic traps such as overflow, underflow and
division by 0".

The VMS Glossary defines TRAP as:
"An exception condition that occurs at the end of the instruction
that caused the exception. The program counter saved on the stack
is the address of the next instruction that would normally have

been executed. All software can enable and disable some of the trap
conditions with a single instruction".

15-1



HANDLING EXCEPTIONS

The VMS Glossary defines FAULT as:

"A hardware exception condition that occurs in the middle of an
instruction and leaves the registers and memory in a consistent
state so that eliminating (the) fault and restarting the
instruction will give correct results”.

The VMS Glossary defines ABORT as:
"An exception that occurs in the middle of an instruction and
sometimes leaves the registers and memory in an indeterminate
state, which may prevent the instruction from being restarted".

Exceptions may be further categorized thus:

o synchronous exceptions - happen at the same spot in a program given the
same values, state etc.

o0 asynchronous exceptions - unpredictable occurrence, the most obvious
being power failure.

15.3 PROGRAM/PROGRAMMER RESPONSE TO EXCEPTIONS

A programmer has four options available when faced with a program that raises
exceptions:

1 ignore the exceptions altogether
2 handle them with some additional code - called an exception handler

3 end the operation causing the exception and continue processing
elsewhere

4 write an error message and terminate the execution of the program
An EXCEPTION HANDLER may be defined as:

"A procedure that the system executes when a process exception
occurs. When an exception occurs, the operating system searches
for an exception handler and, if found, initiates the handler
immediately. The exception handler may perform some action

to change the situation that caused the exception and continue
execution for the process that incurred the exception.
Exception handlers execute in the context of the process at

the access mode of the code that incurred the exception”.

(Based on the definition of Condition Handler in the VMS
Glossary)

15-2



HANDLING EXCEPTIONS

Note that the VAXELN kernel is reponsible for invoking an exception- handler not
the user program. The RTL defines CONDITION as:

"An informational error state which exists when an exception
occurs. The term condition is preferred since the term exception
implies an error...".

The decisions about exceptions should be taken at the design stage of a piece of
software. Consideration of the places in a program where exceptions may arise
e.g. denominators of zero in divide operations, should not occur after they are
discovered in the testing phase of a project - that is too late.

15.4 CONDITION VALUES

Every exception has a unique 32-bit condition value identifying the exception.
The format of these 32-bit values is shown below:

31 28 27 32 0
| entrl | condition identification | severity |
o - - -_— + +

| |
v v
| |
v v
27 16 15 3
Fmm e ————— +- +
| facility number | message number |
e +m—— - —

15-3



HANDLING EXCEPTIONS

15.5 THE SEVERITY FIELD IN CONDITION VALUES

The severity values stored in the least significant three bits of the condition
value range from O through 7 and have meanings as follows:

0 Warning

1 Success

2 Error

3 Information

4 Severe error

(5 reserved to DIGITAL)

(6 reserved to DIGITAL)

(7 reserved to DIGITAL)
These severity codes, and others, are returned by VAXELN routines in the
optional STATUS parameter to those routines. The codes conform to the same
convention as VMS. That is:

O ODD status values indicate SUCCESS

o EVEN status values indicate some degree of FAILURE

15.6 STATUS CHECKING

It is essential that the optional STATUS parameter to VAXELN routine calls is
used, especially while programs are under development and testing.

Failure to collect and test the status returned will mean time wasted searching
for problems, bugs etc. Suitable checking code in Pascal might be something
like this:

CREATE_PROCESS ( Process_identity,
Area_accessor,
STATUS := Returned_status );
IF NOT ODD ( Returned_status ) THEN ....
Always check for specific status wvalues using symbolic constants 1like
KERS_SUCCESS. DO NOT test for a value using integer constants. The following
piece of code shows this bad practice:

IF Returned_status <> 1 THEN ...

15-4



HANDLING EXCEPTIONS

Apart from the fact that maintenance programmers may not be familiar with a
status of 1 the code is obscure and difficult to understand. More importantly
there is more than one success code for some routines but all success codes have
bit O set. DIGITAL recommends testing against either a specific symbolic code
or for an ODD status value.

15.7 EVENTS WHEN EXCEPTIONS ARE RAISED

When an exception is signalled by a program the VAXELN kernel exception
processing software:

O stops normal execution of the program temporarily
o0 calls an exception handler
If no user-defined exception handler is present then the kernel has two options:

o if the debugger is in the system the special debugger handler 1is
invoked

o 1if the debugger is absent the process is deleted

How and where does the kernel find information about a user-defined exception
handler?

15.8 THE STACK

The VMS Glossary defines STACK as:
"An area of memory set aside for temporary storage or for
procedure and interrupt service linkages. A stack uses the LIFO
concept. As items are added to ("pushed on") the stack, the SP
decrements. As items are retrieved from ("popped off") the stack,
the SP increments"

The stack pointer (SP - R14) is one of several important general registers used
in handling procedures - and exception handlers - others are:

o PC (R15) - the program counter

o0 FP (R13) - current stack frame pointer
o AP (R12) - argument pointer

o R2 to Rll - saved registers

The stack is located in the high address end of Pl virtual memory. Each process
has its own stack.



HANDLING EXCEPTIONS

A procedure that is executing has a call frame associated with it. The call
frame looks like this:

e -——
| exception han<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>